Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

A Novel Fault Diagnosis Method Based on SWT and VGG-LSTM Model for Hydraulic Axial Piston Pump

Yong Zhu    
Hong Su    
Shengnan Tang    
Shida Zhang    
Tao Zhou and Jie Wang    

Resumen

Since the hydraulic axial piston pump is the engine that drives hydraulic transmission systems, it is widely utilized in aerospace, marine equipment, civil engineering, and mechanical engineering. Operating safely and dependably is crucial, and failure poses a major risk. Hydraulic axial piston pump malfunctions are characterized by internal concealment, challenging self-adaptive feature extraction, and blatant timing of fault signals. By completely integrating the time-frequency feature conversion capability of synchrosqueezing wavelet transform (SWT), the feature extraction capability of VGG11, as well as the feature memory capability of the long short-term memory (LSTM) model, a novel intelligent fault identification method is proposed in this paper. First, the status data are transformed into two dimensions in terms of time and frequency by using SWT. Second, the depth features of the time?frequency map are obtained and dimensionality reduction is carried out by using the deep feature mining capability of VGG11. Third, LSTM is added to provide the damage identification model for long-term memory capabilities. The Softmax layer is utilized for the intelligent evaluation of various damage patterns and health state. The proposed method is utilized to identify and diagnose five typical states, including normal state, swash plate wear, sliding slipper wear, loose slipper, and center spring failure, based on the externally observed vibration signals of a hydraulic axial piston pump. The results indicate that the average test accuracy for five typical state signals reaches 99.43%, the standard deviation is 0.0011, and the average test duration is 2.675 s. The integrated model exhibits improved all-around performance when compared to LSTM, LeNet-5, AlexNet, VGG11, and other typical models. The proposed method is validated to be efficient and accurate for the intelligent identification of common defects of hydraulic axial piston pumps.

 Artículos similares

       
 
Dingnan Song, Ran Liu, Zhiwei Zhang, Dingding Yang and Tianzhen Wang    
Tidal stream turbines (TSTs) harness the kinetic energy of tides to generate electricity by rotating the rotor. Biofouling will lead to an imbalance between the blades, resulting in imbalanced torque and voltage across the windings, ultimately polluting ... ver más

 
Meng Ma, Zhirong Zhong, Zhi Zhai and Ruobin Sun    
There are hundreds of various sensors used for online Prognosis and Health Management (PHM) of LREs. Inspired by the fact that a limited number of key sensors are selected for inflight control purposes in LRE, it is practical to optimal placement of redu... ver más
Revista: Aerospace

 
Jihe Wang, Qingxian Jia and Dan Yu    
The issue of active attitude fault-tolerant stabilization control for spacecrafts subject to actuator faults, inertia uncertainty, and external disturbances is investigated in this paper. To robustly and accurately reconstruct actuator faults, a novel mi... ver más
Revista: Applied Sciences

 
Mallu Shiva Rama Krishna and Sudheer Mangalampalli    
Task scheduling poses a wide variety of challenges in the cloud computing paradigm, as heterogeneous tasks from a variety of resources come onto cloud platforms. The most important challenge in this paradigm is to avoid single points of failure, as tasks... ver más
Revista: Applied Sciences

 
Yunhan Geng, Shaojuan Su, Tianxiang Zhang and Zhaoyu Zhu    
Centrifugal pumps are susceptible to various faults, particularly under challenging conditions such as high pressure. Swift and accurate fault diagnosis is crucial for enhancing the reliability and safety of mechanical equipment. However, monitoring data... ver más