Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

Enhancing Feature Selection for Imbalanced Alzheimer?s Disease Brain MRI Images by Random Forest

Xibin Wang    
Qiong Zhou    
Hui Li and Mei Chen    

Resumen

Imbalanced learning problems often occur in application scenarios and are additionally an important research direction in the field of machine learning. Traditional classifiers are substantially less effective for datasets with an imbalanced distribution, especially for high-dimensional longitudinal data structures. In the medical field, the imbalance of data problem is more common, and correctly identifying samples of the minority class can obtain important information. Moreover, class imbalance in imbalanced AD (Alzheimer?s disease) data presents a significant challenge for machine learning algorithms that assume the data are evenly distributed within the classes. In this paper, we propose a random forest-based feature selection algorithm for imbalanced neuroimaging data classification. The algorithm employs random forest to evaluate the value of each feature and combines the correlation matrix to choose the optimal feature subset, which is applied to imbalanced MRI (magnetic resonance imaging) AD data to identify AD, MCI (mild cognitive impairment), and NC (normal individuals). In addition, we extract multiple features from AD images that can represent 2D and 3D brain information. The effectiveness of the proposed method is verified by the experimental evaluation using the public ADNI (Alzheimer?s neuroimaging initiative) dataset, and results demonstrate that the proposed method has a higher prediction accuracy and AUC (area under the receiver operating characteristic curve) value in NC-AD, MCI-AD, and NC-MCI group data, with the highest accuracy and AUC value for the NC-AD group data.

 Artículos similares

       
 
Zongshun Wang, Ce Li, Jialin Ma, Zhiqiang Feng and Limei Xiao    
In this study, we introduce a novel framework for the semantic segmentation of point clouds in autonomous driving scenarios, termed PVI-Net. This framework uniquely integrates three different data perspectives?point clouds, voxels, and distance maps?exec... ver más
Revista: Information

 
Vahid Safavi, Arash Mohammadi Vaniar, Najmeh Bazmohammadi, Juan C. Vasquez and Josep M. Guerrero    
Predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is crucial to preventing system failures and enhancing operational performance. Knowing the RUL of a battery enables one to perform preventative maintenance or replace the batte... ver más
Revista: Information

 
Aquib Raza, Thien-Luan Phan, Hung-Chung Li, Nguyen Van Hieu, Tran Trung Nghia and Congo Tak Shing Ching    
Knee osteoarthritis (KOA) is a leading cause of disability, particularly affecting older adults due to the deterioration of articular cartilage within the knee joint. This condition is characterized by pain, stiffness, and impaired movement, posing a sig... ver más
Revista: Information

 
Rongke Wei, Haodong Pei, Dongjie Wu, Changwen Zeng, Xin Ai and Huixian Duan    
The task of 3D reconstruction of urban targets holds pivotal importance for various applications, including autonomous driving, digital twin technology, and urban planning and development. The intricate nature of urban landscapes presents substantial cha... ver más
Revista: Applied Sciences

 
Woonghee Lee, Mingeon Ju, Yura Sim, Young Kul Jung, Tae Hyung Kim and Younghoon Kim    
Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulner... ver más
Revista: Applied Sciences