Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 24 (2022)  /  Artículo
ARTÍCULO
TITULO

Prediction of Complex Odor from Pig Barn Using Machine Learning and Identifying the Influence of Variables Using Explainable Artificial Intelligence

Do-Hyun Lee    
Sang-Hun Lee    
Saem-Ee Woo    
Min-Woong Jung    
Do-yun Kim and Tae-Young Heo    

Resumen

Odor is a very serious problem worldwide. Thus, odor prediction research has been conducted consistently to help prevent odor. Odor substances that are complex odors are known, but complex odors and odor substances do not have a linear dependence. In addition, depending on the combination of odor substances, the causal relationships, such as synergy and antagonism, are different for complex odors. Research is needed to know this, but the situation is incomplete. Therefore, in this study, research was conducted through data-based research. The complex odor was predicted using various machine learning methods, and the effect of odor substances on the complex odor was verified using an explainable artificial intelligence method. In this study, according to the Malodor Prevention Act in Korea, complex odors are divided into two categories: acceptable and unacceptable. Analysis of variance and correlation analysis were used to determine the relationships between variables. Six machine learning methods (k-nearest neighbor, support vector classification, random forest, extremely randomized tree, eXtreme gradient boosting, and light gradient boosting machine) were used as predictive classification models, and the best predictive method was chosen using various evaluation metrics. As a result, the support vector machine that performed best in five out of six evaluation metrics was selected as the best model (f1-score = 0.7722, accuracy = 0.8101, sensitivity = 0.7372, specificity = 0.8656, positive predictive value = 0.8196, and negative predictive value = 0.8049). In addition, the partial dependence plot method from explainable artificial intelligence was used to understand the influence and interaction effects of odor substances.

 Artículos similares

       
 
Xueting Ma, Congying Wang, Huaping Luo and Ganggang Guo    
To enhance the accuracy of multispectral detection using unmanned aerial vehicles (UAVs), multispectral data of jujube fruit with different soluble solids content (SSC) and moisture content (MC) were obtained under different relative azimuth angles. Pred... ver más
Revista: Applied Sciences

 
Jiahao Chen, Jiaxin Li, Deqian Zheng, Qianru Zheng, Jiayi Zhang, Meimei Wu and Chaosai Liu    
The multi-field coupling of grain piles in grain silos is a focal point of research in the field of grain storage. The porosity of grain piles is a critical parameter that affects the heat and moisture transfer in grain piles. To investigate the distribu... ver más
Revista: Applied Sciences

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water

 
Yuto Kamiwaki and Shinji Fukuda    
This study aims to clarify the influence of photographic environments under different light sources on image-based SPAD value prediction. The input variables for the SPAD value prediction using Random Forests, XGBoost, and LightGBM were RGB values, HSL v... ver más
Revista: Algorithms

 
Hosang Han and Jangwon Suh    
The accurate prediction of soil contamination in abandoned mining areas is necessary to address their environmental risks. This study employed a combined model of machine learning and geostatistics to predict the spatial distribution of soil contaminatio... ver más
Revista: Applied Sciences