Resumen
Decarbonizing the transport sector using electric vehicles (EVs) is a vital pathway for China to achieve the carbon peak and carbon neutrality goals. Despite the unprecedented growth of EV diffusion in China, little information is available for the spatial accessibility of public electric vehicle charging services (EVCSs). This study developed an applicable accessibility measurement framework to examine the city-level accessibility of EVCSs in China using the Gaussian two-step floating catchment area (G2SFCA) method. G2SFCA takes the EV charging stations with charging piles as supply and the EV ownership data as demand. The results indicate that (1) the eastern region of China has the highest density of EV charging stations (69.1%), followed by the central region, while the western region has the lowest density; (2) the spatial accessibility of EVCSs has a different pattern, where the central region has the highest accessibility, followed by the eastern and western regions; (3) the spatial mismatch between EVCSs and EV diffusion in the eastern region is larger than that of the other two regions, which may be attributed to the suboptimal layout of EV charging stations and the inconsistent pace between EV penetration and EV charging station construction; and (4) there is a significant spatial inequity in the accessibility of EVCSs across both all three regions and the entirety of China, with the western region exhibiting the highest inequity, followed by the central and eastern regions. Based on these findings, policy implications are drawn for different regions in China, which may aid policymakers in crafting strategic policies and subsidy programs to foster the advancement of EVCSs.