Managing the Taste and Odor Compound 2-MIB in a River-Reservoir System, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Occurrences of 2-MIB and Flushing Events in 2018
2.3. Model Framework
2.3.1. Model Description
2.3.2. Model Configuration and Application
2.3.3. Simulation of 2-MIB Transport and Behavior
2.4. Assessment of Model Performance
3. Results and Discussion
3.1. Monitoring Data
3.2. 2-MIB Transport and Behaviour in Winter Flushing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, K.-Y.; Chiu, Y.-T.; Burch, M.; Senoro, D.; Lin, T.-F. A molecular-based method to estimate the risk associated with cyanotoxins and odor compounds in drinking water sources. Water Res. 2019, 164, 114938. [Google Scholar] [CrossRef] [PubMed]
- Asquith, E.A.; Evans, C.A.; Geary, P.M.; Dunstan, R.H.; Cole, B. The role of Actinobacteria in taste and odour episodes involving geosmin and 2-methylisoborneol in aquatic environments. J. Water Supply Res. Technol.-AQUA 2013, 62, 452–467. [Google Scholar] [CrossRef]
- Byun, J.-H.; Kim, H.-N.; Kang, T.-G.; Kim, B.-H.; Byeon, M.-S. Study of the cause of the generation of odor compounds (geosmin and 2-methylisoborneol) in the Han River system, the drinking water source. Water Supply 2023, 23, 1081–1093. [Google Scholar]
- Ridal, J.J.; Watson, S.B.; Hickey, M.B. A comparison of biofilms from macrophytes and rocks for taste and odor producers in the St. Lawrence River. Water Sci. Technol. 2007, 55, 15–21. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Xu, B.; Kumirska, J.; Qi, F. Occurrence of earthy-musty taste and odors in the Taihu Lake, China: Spatial and seasonal patterns. RSC Adv. 2016, 6, 79723–79733. [Google Scholar] [CrossRef]
- Niiyama, Y.; Tuji, A.; Takemoto, K.; Ichise, S. Pseudanabaena foetida sp. nov. and P. subfoetida sp. nov. (Cyanophyta/Cyanobacteria) producing 2-methylisoborneol from Japan. Fottea 2016, 16, 1–16. [Google Scholar] [CrossRef]
- Shizuka, K.; Maie, N.; Kakino, W.; Taruya, H.; Tanji, H. Forecasting a 2-methylisoborneol outbreak in a brackish lake. Environ. Monit. Assess. 2021, 193, 379. [Google Scholar] [CrossRef]
- Pham, T.-L.; Bui, M.H.; Driscoll, M.; Shimizu, K.; Motoo, U. First report of geosmin and 2-methylisoborneol (2-MIB) in Dolichospermum and Oscillatoria from Vietnam. Limnolgy 2020, 22, 43–56. [Google Scholar] [CrossRef]
- Kim, K.T.; Park, Y.-G. Geosmin and 2-MIB removal by full-scale drinking water treatment processes in the Republic of Korea. Water 2021, 13, 628. [Google Scholar] [CrossRef]
- Byun, J.H.; Cho, I.H.; Hwang, S.J.; Park, M.H.; Byeon, M.S.; Kim, B.H. Relationship between a Dense Bloom of Cyanobacterium Anabaena spp. and Rainfalls in the North Han River System of South Korea. Korean J. Ecol. Environ. 2014, 47, 116–126. [Google Scholar] [CrossRef]
- Byun, J.-H.; Hwang, S.J.; Kim, B.-H.; Park, J.-R.; Lee, J.-K.; Lim, B.-J. Relationship between a dense population of cyanobacteria and odorous compounds in the North Han River system in 2014 and 2015. Korean J. Ecol. Environ. 2015, 48, 263–271. [Google Scholar] [CrossRef]
- You, K.-A.; Byeon, M.-S.; Youn, S.-J.; Hwang, S.-J.; Rhew, D.-H. Growth characteristics of blue-green algae (Anabaena spiroides) causing tastes and odors in the North-Han River, Korea. Korean J. Ecol. Environ. 2013, 46, 135–144. [Google Scholar] [CrossRef]
- Lee, J.E.; Park, R.; Yu, M.; Byeon, M.; Kang, T. qPCR-based monitoring of 2-Methylisoborneol/Geosmin-producing cyanobacteria in drinking water reservoirs in South Korea. Microorganisms 2023, 11, 2332. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.-W.; Ju, Y.-G.; Oh, H.-K.; Lee, B.-W.; Kim, H.-K.; Kim, D.-G.; Hong, S.-K. Evaluation of removal characteristics of taste and odor-causing compounds and organic matters using ozone/granular activated carbon (O3/GAC) process. J. Korean Soc. Water Environ. 2012, 26, 237–247. [Google Scholar]
- Kim, K.; Lee, S.; Seo, K.; Hwang, S.-J. Molecular identification of Pseudanabaena strains and analysis of 2-MIB production potential in the North Han River system. Korean J. Ecol. Environ. 2020, 53, 344–354. [Google Scholar] [CrossRef]
- Jeong, J.-Y.; Lee, S.-H.; Yun, M.-R.; Oh, S.-E.; Kim, T.-H.; Yoon, M.-H.; Park, H.-D. Draft genome sequence of putative 2-methylisoborneol-producing Pseudanabaena yagii strain GIHE-NHR1, isolated from the North Han River in South Korea. Microbiol. Resour. Announc. 2020, 9, e00431-20. [Google Scholar] [CrossRef]
- Jeong, J.-Y.; Lee, S.-H.; Yun, M.-R.; Oh, S.-E.; Lee, K.-H.; Park, H.-D. 2-methylisoborneol (2-MIB) excretion by Pseudanabaena yagii under low temperature. Microorganisms 2021, 9, 2486. [Google Scholar]
- Manganelli, M.; Testai, E.; Tazart, Z.; Scardala, S.; Codd, G.A. Co-Occurrence of taste and odor compounds and cyanotoxins in cyanobacterial blooms: Emerging risks to human health? Microorganisms 2023, 11, 872. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.; Liu, T.; Li, X.; Cui, Y.; Xu, L.; Huo, S.; Zou, B.; Qian, J.; Ma, A.; et al. Removal of taste and odor compounds from water: Methods, mechanism and prospects. Catalysts 2023, 13, 1356. [Google Scholar] [CrossRef]
- Fan, C.-C.; Chiu, Y.-T.; Lin, T.-F. A simple alternative method for preservation of 2-Methylisoborneol in water samples. Int. J. Environ. Res. Public Health 2018, 15, 1015. [Google Scholar] [CrossRef]
- Kim, J.-K.; Lee, S.-H.; Bang, H.-H.; Hwang, S.-O. Characteristics of algae occurrence in Lake Paldang. J. Korean Soc. Environ. Eng. 2009, 31, 325–331. [Google Scholar]
- Bae, B.-U.; Lee, Y.-J.; Lim, M.-G. Comparison of taste and odor in raw water from the main Daecheong Reservoir and its regulating reservoir downstream. J. Korean Soc. Water Environ. 2008, 24, 598–602. [Google Scholar]
- Lloyd, S.W.; Lea, J.M.; Zimba, P.V.; Grimm, C.C. Rapid analysis of geosmin and 2-methylisoborneol in water using solid-phase microextraction procedures. Water Res. 1998, 32, 2140–2146. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K.-L.; Lim, T.-H.; Park, J.-J.; Cheon, S. Determination of geosmin and 2-MIB in Nakdong River using headspace solid-phase microextraction and GC-MS. Anal Sci. Technol. 2013, 26, 326–332. [Google Scholar] [CrossRef]
- Dzialowski, A.R.; Smith, V.H.; Huggins, D.G.; Denoyelles, F.; Lim, N.C.; Baker, D.S.; Beury, J.H. Development of predictive models for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs. Water Res. 2009, 43, 2829–2840. [Google Scholar] [CrossRef]
- Huang, X.; Wang, S.; Wang, G.; Zhu, S.; Ye, Z. Kinetic and mechanistic investigation of geosmin and 2-methylisoborneol degradation using UV-assisted photoelectrochemical. Chemosphere 2022, 290, 133325. [Google Scholar] [CrossRef]
- Bong, T.; Kang, J.-K.; Yargeau, V.; Nam, H.-L.; Lee, S.-H.; Choi, J.-W.; Kim, S.-B.; Park, J.-A. Geosmin and 2-methylisoborneol adsorption using different carbon materials: Isotherm, kinetic, multiple linear regression, and deep neural network modeling using a real drinking water source. J. Clean. Prod. 2021, 314, 127967. [Google Scholar] [CrossRef]
- Ho, L.; Hoefel, D.; Bock, F.; Saint, C.P.; Newcombe, G. Biodegradation rates of 2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors. Chemosphere 2007, 66, 2210–2218. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, J. Observation and Simulation of 2-methylisoborneol in the Qingcaosha Reservoir, Changjiang estuary. J. Oceanol. Limnol. 2018, 36, 1586–1596. [Google Scholar] [CrossRef]
- Chung, S.-W.; Chong, S.-A.; Park, H.-S. Development and applications of a predictive model for geosmin in North Han River, Korea. Procedia Eng. 2016, 154, 521–528. [Google Scholar] [CrossRef]
- Chong, S.; Lee, H.; An, K.-G. Predicting taste and odor compounds in a shallow reservoir using a three–dimensional hydrodynamic ecological model. Water 2018, 10, 1396. [Google Scholar] [CrossRef]
- Ministry of Environment (MOE). White Paper of Algae in Lake Paldang; NIER: Incheon, Republic of Korea, 2016.
- Korea Meteorological Administration (KMA). Available online: https://data.kma.go.kr/climate/average30Years/selectAverage30YearsKoreaList.do?pgmNo=188 (accessed on 21 September 2023).
- Tetra Tech, Inc. The Environmental Fluid Dynamics Code User Manual US EPA Version 1.01; US EPA: Fairfax, VI, USA, 2007.
- National Institute of Environmental Research. An Advanced Research on the Water Quality Forecasting System and the Numerical Models (I); NIER: Incheon, Republic of Korea, 2013.
- Kim, K.; Park, M.; Min, J.-H.; Ryu, I.; Kang, M.-R.; Park, L.J. Simulation of algal bloom dynamics in a river with the ensemble Kalman filter. J. Hydrol. 2014, 519, 2810–2821. [Google Scholar] [CrossRef]
- Shin, C.M.; Kim, D.; Song, Y. Analysis of hydraulic characteristics of Yeongsan River and estuary using EFDC model. J. Korean Soc. Water Environ. 2019, 35, 580–588. [Google Scholar]
- Park, S.; Kim, K.; Shin, C.; Min, J.-H.; Na, E.H.; Park, L.J. Variable update strategy for improved water quality forecast accuracy in multivariate data assimilation using the ensemble Kalman filter. Water Res. 2020, 176, 115711. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.M.; Kim, J.; Park, L.J.; Jeon, J.; Jong, J.; Min, J.-H.; Kang, T. Predicting cyanobacterial harmful algal blooms (CyanoHABs) in a regulated river using a revised EFDC model. Water 2021, 13, 439. [Google Scholar] [CrossRef]
- Kim, D.; Shin, C. Algal bloom characteristics of Yeongsan River based on weir and estuary dam operating conditions using EFDC-NIER model. Water 2021, 13, 2295. [Google Scholar] [CrossRef]
- Pyo, J.; Kwon, Y.S.; Min, J.-H.; Nam, G.; Song, Y.-S.; Ahn, J.M.; Park, S.; Lee, J.; Cho, K.H.; Park, Y. Effect of hydrospectral image-based initial conditions on improving short-term algal Simulation of hydrodynamic and water quality models. J. Environ. Manag. 2021, 294, 112988. [Google Scholar] [CrossRef]
- Ahn, J.M.; Kim, J.; Kwak, S.; Kang, T. Optimized Microcystis prediction model using EFDC-NIER and LH-OAT method. KSCE J. Civil Eng. 2023, 27, 1066–1076. [Google Scholar] [CrossRef]
- Ministry of Environment (MOE). Drinking Water Quality Monitoring Guideline; NIER: Sejong-si, Republic of Korea, 2017.
Location | Water Temperature (°C) | DO (mg/L) | TN (mg/L) | TP (mg/L) | TOC (mg/L) | Chl-a (mg/m3) |
---|---|---|---|---|---|---|
Gapyeong Bridge | 9.3 | 11.2 | 1.8 | 0.012 | 1.9 | 4.8 |
(8.0~10.2) | (10.6~11.7) | (1.6~1.9) | (0.008~0.017) | (1.8~2.0) | (3.0~6.3) | |
Shincheongpyeong Bridge | 9.0 | 11.3 | 1.763 | 0.013 | 1.9 | 8.2 |
(7.9~10.3) | (10.9~11.7) | (1.6~1.9) | (0.009~0.016) | (1.8~2.3) | (4.0~7.4) | |
Paldang Dam2 | 7.7 | 11.5 | 2.277 | 0.016 | 1.7 | 8.2 |
(6.8~9.1) | (10.2~12.0) | (2.1~2.7) | (0.014~0.020) | (1.6~1.8) | (6.6~13.9) |
Model I | Model II | Model III | |
---|---|---|---|
Dimension | 2-D | 3-D | 2-D |
Model grid | 5045 (80.3 × 81.3 m) | 3300 (139.4 × 130.7 m) ×11 layers | 2984 (87.0 × 295.0 m) |
Weather data (Aser. INP) | Yangpyeng | Yangpyeng | Seoul |
Simulation time step | 10 s | 10 s | 10 s |
Boundary conditions (Qser/Pser/Dser. INP) | Five upstream flows (WAMIS) and one downstream pressure (Chungpyung reservoir stage) | 11 upstream flows and one downstream pressure (Paldang reservoir stage) | One upstream flows and one downstream pressure (Han River estuary) |
Sources and sinks | Two water intake facilities and 3 WWTPs | Four water intake facilities and 5 WWTPs | 4 WWTPs and 2 TMS stations |
Degradation Rate Constants | Equations | References | |
---|---|---|---|
Geosmin | 2-MIB | ||
0.075 | 0.064 | Pseudo-1st-order | Ho et al. [28] |
0.68 | 1st-order | Chung et al. [30] | |
0.064 | Monod | Chen and Zhu, [29] | |
0.14 | 0.14 | 1st-order | Chong et al. [31] |
Description | 1st-Order Net Decay | Conservative | 1st-Order Net Production | ||
---|---|---|---|---|---|
Constants | Kdecay2 | Kdecay1 | K0 | Kprod1 | Kprod2 |
Values (day−1) | −0.14 | −0.064 | 0 | 0.14 | 0.064 |
St.1 | 2.4 | 2.8 | 2.5 | 3.1 | 4.8 |
St.2 | 6.4 | 7.9 | 5.5 | 5.9 | 9.4 |
St.3 | 11.0 | 15.1 | 8.1 | 10.6 | 24.3 |
St.4 | 9.7 | 13.9 | 5.8 | 8.1 | 22.4 |
St.5 | 16.6 | 20.3 | 13.3 | 10.2 | 8.4 |
average | 9.2 | 12.0 | 7.0 | 7.6 | 13.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.; Kim, D.-W.; Park, M.; Kim, K.; Min, J.-H. Managing the Taste and Odor Compound 2-MIB in a River-Reservoir System, South Korea. Water 2023, 15, 4107. https://doi.org/10.3390/w15234107
Kang M, Kim D-W, Park M, Kim K, Min J-H. Managing the Taste and Odor Compound 2-MIB in a River-Reservoir System, South Korea. Water. 2023; 15(23):4107. https://doi.org/10.3390/w15234107
Chicago/Turabian StyleKang, Miri, Deok-Woo Kim, Minji Park, Kyunghyun Kim, and Joong-Hyuk Min. 2023. "Managing the Taste and Odor Compound 2-MIB in a River-Reservoir System, South Korea" Water 15, no. 23: 4107. https://doi.org/10.3390/w15234107
APA StyleKang, M., Kim, D.-W., Park, M., Kim, K., & Min, J.-H. (2023). Managing the Taste and Odor Compound 2-MIB in a River-Reservoir System, South Korea. Water, 15(23), 4107. https://doi.org/10.3390/w15234107