Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

A Fully Coupled CFD-DMB Approach on the Ship Hydroelasticity of a Containership in Extreme Wave Conditions

Yujia Wei    
Atilla Incecik and Tahsin Tezdogan    

Resumen

In this paper, we present a fully coupled computational fluid dynamic (CFD) and discrete module beam (DMB) method for the numerical prediction of nonlinear hydroelastic responses of a ship advancing in regular and focused wave conditions. A two-way data communication scheme is applied between two solvers, whereby the external fluid pressure exported from the CFD simulation is used to derive the structural responses in the DMB solver, and the structural deformations are fed back into the CFD solver to deform the mesh. We first conduct a series of verification and validation studies by using the present CFD?DMB method to investigate the global ship motion, vertical bending moments (VBMs), and green water phenomenon of the ship in different regular wave conditions. The numerical results agreed favourably with the CFD?FEA model and experimental measurements. Then, the extreme ship motions are studied in focused wave conditions to represent extreme sea conditions that a ship may experience in a real sea state. According to the conclusion drawn from the numerical simulations, it is founded that the focused wave case will lead to the increase of the longitudinal responses of the hull compared to regular wave condition, i.e., the heave, pitch, and total VBMs rise about 25% 25 % , 20% 20 % and 9% 9 % , respectively. In focused wave conditions, intensive ship responses and severe waves cause stronger slamming phenomena. It is found that the instantaneous impact pressure from the focused wave is higher and sharper compared to the regular waves and comes along with the obvious green-water-on-deck phenomena.

 Artículos similares

       
 
Bingyu Song, Yingwu Chen, Qing Yang, Yahui Zuo, Shilong Xu and Yuning Chen    
The multi-satellite on-board observation planning (MSOOP) is a variant of the multi-agent task allocation problem (MATAP). MSOOP is used to complete the observation task allocation in a fully cooperative mode to maximize the profits of the whole system. ... ver más
Revista: Algorithms

 
Maria Vasilyeva, Sergei Stepanov, Alexey Sadovski and Stephen Henry    
We consider the multispecies model described by a coupled system of diffusion?reaction equations, where the coupling and nonlinearity are given in the reaction part. We construct a semi-discrete form using a finite volume approximation by space. The full... ver más
Revista: Computation

 
Jinnan Wang, Weiqin Tong and Xiaoli Zhi    
Convolutional neural networks (CNNs) have made impressive achievements in image classification and object detection. For hardware with limited resources, it is not easy to achieve CNN inference with a large number of parameters without external storage. ... ver más
Revista: Algorithms

 
Xingwei Zhen, Frank Lim, Qiuyang Duan, Yiwei Geng and Yi Huang    
The prevailing offshore field development solutions, i.e., dry tree and wet tree systems, are confronted with serious technical and economic challenges in deep and ultra-deep waters resulting from the large depth of water, far offshore distance, and hars... ver más

 
Song Hu, Qi Shao, Wei Li, Guijun Han, Qingyu Zheng, Ru Wang and Hanyu Liu    
Data-driven predictions of marine environmental variables are typically focused on single variables. However, in real marine environments, there are correlations among different oceanic variables. Additionally, sea?air interactions play a significant rol... ver más