Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

Feature Extracted Deep Neural Collaborative Filtering for E-Book Service Recommendations

Ji-Yoon Kim and Chae-Kwan Lim    

Resumen

The electronic publication market is growing along with the electronic commerce market. Electronic publishing companies use recommendation systems to increase sales to recommend various services to consumers. However, due to data sparsity, the recommendation systems have low accuracy. Also, previous deep neural collaborative filtering models utilize various variables of datasets such as user information, author information, and book information, and these models have the disadvantage of requiring significant computing resources and training time for their training. To address this issue, we propose a deep neural collaborative filtering model with feature extraction that uses minimal data such as user number, book number, and rating information. The proposed model comprises an input layer for inputting and embedding the product and user data, a feature extraction layer for extracting the features through data correlation analysis between the embedded user and product data, a multilayer perceptron, and an output layer. To improve the performance of the proposed model, Bayesian optimization was used to determine hyperparameters. To evaluate the deep neural collaborative filtering model with feature extraction, a comparative analysis experiment was conducted with currently used collaborative filtering models. The goodbooks-10k public dataset was used, and the results of the experiment show that the low accuracy caused by data sparsity was considerably improved.

 Artículos similares

       
 
Yuhuan Wu and Yonghong Wu    
Salient object detection (SOD) aims to identify the most visually striking objects in a scene, simulating the function of the biological visual attention system. The attention mechanism in deep learning is commonly used as an enhancement strategy which e... ver más
Revista: Algorithms

 
Danilo Pau, Andrea Pisani and Antonio Candelieri    
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger ... ver más
Revista: Algorithms

 
Jun Peng and Baohua Su    
The task of aspect-based sentiment analysis (ASBA) is to identify all the sentiment analyses expressed by specific aspect words in the text. How to identify specific objects (i.e., aspect words), describe the modifiers of the specific objects (i.e., opin... ver más
Revista: Applied Sciences

 
Guanwen Zhang and Dongnian Jiang    
Rolling bearings are one of the most important and indispensable components of a mechanical system, and an accurate prediction of their remaining life is essential to ensuring the reliable operation of a mechanical system. In order to effectively utilize... ver más
Revista: Applied Sciences

 
Shurong Peng, Lijuan Guo, Haoyu Huang, Xiaoxu Liu and Jiayi Peng    
The integration of large-scale wind power into the power grid threatens the stable operation of the power system. Traditional wind power prediction is based on time series without considering the variability between wind turbines in different locations. ... ver más
Revista: Applied Sciences