Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Drones  /  Vol: 3 Par: 3 (2019)  /  Artículo
ARTÍCULO
TITULO

Deep Reinforcement Learning for Drone Delivery

Guillem Muñoz    
Cristina Barrado    
Ender Çetin and Esther Salami    

Resumen

Drones are expected to be used extensively for delivery tasks in the future. In the absence of obstacles, satellite based navigation from departure to the geo-located destination is a simple task. When obstacles are known to be in the path, pilots must build a flight plan to avoid them. However, when they are unknown, there are too many or they are in places that are not fixed positions, then to build a safe flight plan becomes very challenging. Moreover, in a weak satellite signal environment, such as indoors, under trees canopy or in urban canyons, the current drone navigation systems may fail. Artificial intelligence, a research area with increasing activity, can be used to overcome such challenges. Initially focused on robots and now mostly applied to ground vehicles, artificial intelligence begins to be used also to train drones. Reinforcement learning is the branch of artificial intelligence able to train machines. The application of reinforcement learning to drones will provide them with more intelligence, eventually converting drones in fully-autonomous machines. In this work, reinforcement learning is studied for drone delivery. As sensors, the drone only has a stereo-vision front camera, from which depth information is obtained. The drone is trained to fly to a destination in a neighborhood environment that has plenty of obstacles such as trees, cables, cars and houses. The flying area is also delimited by a geo-fence; this is a virtual (non-visible) fence that prevents the drone from entering or leaving a defined area. The drone has to avoid visible obstacles and has to reach a goal. Results show that, in comparison with the previous results, the new algorithms have better results, not only with a better reward, but also with a reduction of its variance. The second contribution is the checkpoints. They consist of saving a trained model every time a better reward is achieved. Results show how checkpoints improve the test results.

Palabras claves

 Artículos similares

       
 
Tamim Mahmud Al-Hasan, Aya Nabil Sayed, Faycal Bensaali, Yassine Himeur, Iraklis Varlamis and George Dimitrakopoulos    
Recommender systems are a key technology for many applications, such as e-commerce, streaming media, and social media. Traditional recommender systems rely on collaborative filtering or content-based filtering to make recommendations. However, these appr... ver más

 
Tongyang Xu, Yuan Liu, Zhaotai Ma, Yiqiang Huang and Peng Liu    
As a new distributed machine learning (ML) approach, federated learning (FL) shows great potential to preserve data privacy by enabling distributed data owners to collaboratively build a global model without sharing their raw data. However, the heterogen... ver más
Revista: Future Internet

 
Zuopeng Li, Hengshuai Ju and Zepeng Ren    
The existing research on dependent task offloading and resource allocation assumes that edge servers can provide computational and communication resources free of charge. This paper proposes a two-stage resource allocation method to address this issue. I... ver más
Revista: Future Internet

 
Qianqian Wu, Qiang Liu, Zefan Wu and Jiye Zhang    
In the field of ocean data monitoring, collaborative control and path planning of unmanned aerial vehicles (UAVs) are essential for improving data collection efficiency and quality. In this study, we focus on how to utilize multiple UAVs to efficiently c... ver más
Revista: Future Internet

 
Jiacheng Hou, Tianhao Tao, Haoye Lu and Amiya Nayak    
Information-centric networking (ICN) has gained significant attention due to its in-network caching and named-based routing capabilities. Caching plays a crucial role in managing the increasing network traffic and improving the content delivery efficienc... ver más
Revista: Future Internet