Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Algorithms  /  Vol: 13 Par: 1 (2020)  /  Artículo
ARTÍCULO
TITULO

An Effective and Efficient Genetic-Fuzzy Algorithm for Supporting Advanced Human-Machine Interfaces in Big Data Settings

Alfredo Cuzzocrea    
Enzo Mumolo and Giorgio Mario Grasso    

Resumen

In this paper we describe a novel algorithm, inspired by the mirror neuron discovery, to support automatic learning oriented to advanced man-machine interfaces. The algorithm introduces several points of innovation, based on complex metrics of similarity that involve different characteristics of the entire learning process. In more detail, the proposed approach deals with an humanoid robot algorithm suited for automatic vocalization acquisition from a human tutor. The learned vocalization can be used to multi-modal reproduction of speech, as the articulatory and acoustic parameters that compose the vocalization database can be used to synthesize unrestricted speech utterances and reproduce the articulatory and facial movements of the humanoid talking face automatically synchronized. The algorithm uses fuzzy articulatory rules, which describe transitions between phonemes derived from the International Phonetic Alphabet (IPA), to allow simpler adaptation to different languages, and genetic optimization of the membership degrees. Large experimental evaluation and analysis of the proposed algorithm on synthetic and real data sets confirms the benefits of our proposal. Indeed, experimental results show that the vocalization acquired respects the basic phonetic rules of Italian languages and that subjective results show the effectiveness of multi-modal speech production with automatic synchronization between facial movements and speech emissions. The algorithm has been applied to a virtual speaking face but it may also be used in mechanical vocalization systems as well.

 Artículos similares

       
 
Zihao Zhu and Yonghua Xie    
Black soil plays an important role in maintaining a healthy ecosystem, promoting high-yield and efficient agricultural production, and conserving soil resources. In this paper, a typical black soil area of Keshan Farm in Qiqihar City, Heilongjiang Provin... ver más
Revista: Applied Sciences

 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Jaroslaw Kurek, Tomasz Latkowski, Michal Bukowski, Bartosz Swiderski, Mateusz Lepicki, Grzegorz Baranik, Bogusz Nowak, Robert Zakowicz and Lukasz Dobrakowski    
In the evolving realities of recruitment, the precision of job?candidate matching is crucial. This study explores the application of Zero-Shot Recommendation AI Models to enhance this matching process. Utilizing advanced pretrained models such as all-Min... ver más
Revista: Applied Sciences

 
Mengping Huang, Shuai Ma, Jinrong He, Wei Xue, Xueyan Hou, Yuqi Zhang, Xiaofeng Liu, Heping Bai and Ran Li    
Amino acids found in minor coarse cereals are essential for human growth and development and play a crucial role in efficient and rapid quantitative detection. Surface-enhanced Raman spectroscopy (SERS) enables nondestructive, efficient, and rapid sample... ver más
Revista: Applied Sciences

 
Wenxiao Cao, Guoming Li, Hongfei Song, Boyu Quan and Zilu Liu    
Water control of grain has always been a crucial link in storage and transportation. The resistance method is considered an effective technique for quickly detecting moisture in grains, making it particularly valuable in practical applications at drying ... ver más
Revista: Applied Sciences