Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Agriculture  /  Vol: 13 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Deep Learning for Laying Hen Activity Recognition Using Wearable Sensors

Mohammad Shahbazi    
Kamyar Mohammadi    
Sayed M. Derakhshani and Peter W. G. Groot Koerkamp    

Resumen

Laying hen activities in modern intensive housing systems can dramatically influence the policies needed for the optimal management of such systems. Intermittent monitoring of different behaviors during daytime cannot provide a good overview, since daily behaviors are not equally distributed over the day. This paper investigates the application of deep learning technology in the automatic recognition of laying hen behaviors equipped with body-worn inertial measurement unit (IMU) modules in poultry systems. Motivated by the human activity recognition literature, a sophisticated preprocessing method is tailored on the time-series data of IMU, transforming it into the form of so-called activity images to be recognized by the deep learning models. The diverse range of behaviors a laying hen can exhibit are categorized into three classes: low-, medium-, and high-intensity activities, and various recognition models are trained to recognize these behaviors in real-time. Several ablation studies are conducted to assess the efficacy and robustness of the developed models against variations and limitations common for an in situ practical implementation. Overall, the best trained model on the full-feature acquired data achieves a mean accuracy of almost 100%, where the whole process of inference by the model takes less than 30 milliseconds. The results suggest that the application of deep learning technology for activity recognition of individual hens has the potential to accurately aid successful management of modern poultry systems.

 Artículos similares

       
 
Ying Chen, Xi Qiao, Feng Qin, Hongtao Huang, Bo Liu, Zaiyuan Li, Conghui Liu, Quan Wang, Fanghao Wan, Wanqiang Qian and Yiqi Huang    
Invasive plant species pose significant biodiversity and ecosystem threats. Real-time identification of invasive plants is a crucial prerequisite for early and timely prevention. While deep learning has shown promising results in plant recognition, the u... ver más
Revista: Agronomy

 
Utpal Barman, Parismita Sarma, Mirzanur Rahman, Vaskar Deka, Swati Lahkar, Vaishali Sharma and Manob Jyoti Saikia    
Invading pests and diseases always degrade the quality and quantity of plants. Early and accurate identification of plant diseases is critical for plant health and growth. This work proposes a smartphone-based solution using a Vision Transformer (ViT) mo... ver más
Revista: Agronomy

 
Yi Yang, Guankang Zhang, Shutao Ma, Zaihua Wang, Houcheng Liu and Song Gu    
The accurate detection and counting of flowers ensure the grading quality of the ornamental plants. In automated potted flower grading scenarios, low detection precision, occlusions and overlaps impact counting accuracy. This study proposed a counting me... ver más
Revista: Agronomy

 
Adriano Mancini, Francesco Solfanelli, Luca Coviello, Francesco Maria Martini, Serena Mandolesi and Raffaele Zanoli    
Yield prediction is a crucial activity in scheduling agronomic operations and in informing the management and financial decisions of a wide range of stakeholders of the organic durum wheat supply chain. This research aims to develop a yield forecasting s... ver más
Revista: Agronomy

 
Haobin Xu, Linxiao Fu, Jinnian Li, Xiaoyu Lin, Lingxiao Chen, Fenglin Zhong and Maomao Hou    
Nonheading Chinese cabbage is an important leafy vegetable, and quantitative identification and automated analysis of nonheading Chinese cabbage leaves are crucial for cultivating new varieties with higher quality, yield, and resistance. Traditional leaf... ver más
Revista: Agronomy