Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 10 (2020)  /  Artículo
ARTÍCULO
TITULO

Deep Learning-Based Approach to Fast Power Allocation in SISO SWIPT Systems with a Power-Splitting Scheme

Huynh Thanh Thien    
Pham-Viet Tuan and Insoo Koo    

Resumen

Recently, simultaneous wireless information and power transfer (SWIPT) systems, which can supply efficiently throughput and energy, have emerged as a potential research area in fifth-generation (5G) system. In this paper, we study SWIPT with multi-user, single-input single-output (SISO) system. First, we solve the transmit power optimization problem, which provides the optimal strategy for getting minimum power while satisfying sufficient signal-to-noise ratio (SINR) and harvested energy requirements to ensure receiver circuits work in SWIPT systems where receivers are equipped with a power-splitting structure. Although optimization algorithms are able to achieve relatively high performance, they often entail a significant number of iterations, which raises many issues in computation costs and time for real-time applications. Therefore, we aim at providing a deep learning-based approach, which is a promising solution to address this challenging issue. Deep learning architectures used in this paper include a type of Deep Neural Network (DNN): the Feed-Forward Neural Network (FFNN) and three types of Recurrent Neural Network (RNN): the Layer Recurrent Network (LRN), the Nonlinear AutoRegressive network with eXogenous inputs (NARX), and Long Short-Term Memory (LSTM). Through simulations, we show that the deep learning approaches can approximate a complex optimization algorithm that optimizes transmit power in SWIPT systems with much less computation time.

 Artículos similares

       
 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Mihael Gudlin, Miro Hegedic, Matija Golec and Davor Kolar    
In the quest for industrial efficiency, human performance within manufacturing systems remains pivotal. Traditional time study methods, reliant on direct observation and manual video analysis, are increasingly inadequate, given technological advancements... ver más
Revista: Applied Sciences

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
François Legrand, Richard Macwan, Alain Lalande, Lisa Métairie and Thomas Decourselle    
Automated Cardiac Magnetic Resonance segmentation serves as a crucial tool for the evaluation of cardiac function, facilitating faster clinical assessments that prove advantageous for both practitioners and patients alike. Recent studies have predominant... ver más
Revista: Algorithms

 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures