Resumen
Doxycycline (DOX), a typical antibiotic, is harmful to aquatic ecosystems and human health. This study presents DOX removal by potassium ferrate (Fe(VI)) and montmorillonite and investigates the effect of Fe(VI) dosage, reaction time, initial pH value, montmorillonite dosage, adsorption pH, time and temperature on DOX removal. The results show that DOX removal increases when increasing the Fe(VI) dosage, with the optimal condition for DOX removal (~97%) by Fe(VI) observed under a molar ratio ([Fe(VI)]:[DOX]) of 30:1 at pH 7. The reaction of DOX with Fe(VI) obeyed second-order kinetics with a rate constant of 10.7 ± 0.45 M-1 s-1 at pH 7. The limited promotion (~4%) of DOX adsorption by montmorillonite was observed when the temperature increased and the pH decreased. Moreover, the synergetic effect of Fe(VI) and montmorillonite on DOX removal was obtained when comparing the various types of dosing sequences (Fe(VI) oxidation first and then adsorption; adsorption first and then Fe(VI) oxidation; simultaneous oxidation and adsorption). The best synergistic effect of DOX removal (97%) was observed under the simultaneous addition of Fe(VI) and montmorillonite, maintaining the Fe(VI) dosage (from 30:1 to 5:1). Five intermediates were detected during DOX degradation, and a plausible DOX degradation pathway was proposed.