Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

PIFNet: 3D Object Detection Using Joint Image and Point Cloud Features for Autonomous Driving

Wenqi Zheng    
Han Xie    
Yunfan Chen    
Jeongjin Roh and Hyunchul Shin    

Resumen

Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection methods are based on Lidar point cloud data. However, these methods have some limitations in localization consistency and classification confidence, due to the irregularity and sparsity of Light Detection and Ranging (LiDAR) point cloud data. Inspired by the complementary characteristics of Lidar and camera sensors, we propose a new end-to-end learnable framework named Point-Image Fusion Network (PIFNet) to integrate the LiDAR point cloud and camera images. To resolve the problem of inconsistency in the localization and classification, we designed an Encoder-Decoder Fusion (EDF) module to extract the image features effectively, while maintaining the fine-grained localization information of objects. Furthermore, a new effective fusion module is proposed to integrate the color and texture features from images and the depth information from the point cloud. This module can enhance the irregularity and sparsity problem of the point cloud features by capitalizing the fine-grained information from camera images. In PIFNet, each intermediate feature map is fed into the fusion module to be integrated with its corresponding point-wise features. Furthermore, point-wise features are used instead of voxel-wise features to reduce information loss. Extensive experiments using the KITTI dataset demonstrate the superiority of PIFNet over other state-of-the-art methods. Compared with several state-of-the-art methods, our approach outperformed by 1.97% in mean Average Precision (mAP) and by 2.86% in Average Precision (AP) for the hard cases on the KITTI 3D object detection benchmark.

 Artículos similares

       
 
Xinmin Li, Yingkun Wei, Jiahui Li, Wenwen Duan, Xiaoqiang Zhang and Yi Huang    
Object detection in unmanned aerial vehicle (UAV) images has become a popular research topic in recent years. However, UAV images are captured from high altitudes with a large proportion of small objects and dense object regions, posing a significant cha... ver más
Revista: Applied Sciences

 
Ugur Akis and Serkan Dislitas    
In applications reliant on image processing, the management of lighting holds significance for both precise object detection and efficient energy utilization. Conventionally, lighting control involves manual switching, timed activation or automated adjus... ver más
Revista: Applied Sciences

 
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li    
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti... ver más
Revista: Applied Sciences

 
Yiming Mo, Lei Wang, Wenqing Hong, Congzhen Chu, Peigen Li and Haiting Xia    
The intrusion of foreign objects on airport runways during aircraft takeoff and landing poses a significant safety threat to air transportation. Small-scale Foreign Object Debris (FOD) cannot be ruled out on time by traditional manual inspection, and the... ver más
Revista: Applied Sciences

 
Ahad Alotaibi, Chris Chatwin and Phil Birch    
In aerial surveillance systems, achieving optimal object detection precision is of paramount importance for effective monitoring and reconnaissance. This article presents a novel approach to enhance object detection accuracy through the integration of De... ver más