Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Water  /  Vol: 15 Par: 16 (2023)  /  Artículo
ARTÍCULO
TITULO

Potential of Artificial Intelligence-Based Techniques for Rainfall Forecasting in Thailand: A Comprehensive Review

Muhammad Waqas    
Usa Wannasingha Humphries    
Angkool Wangwongchai    
Porntip Dechpichai and Shakeel Ahmad    

Resumen

Rainfall forecasting is one of the most challenging factors of weather forecasting all over the planet. Due to climate change, Thailand has experienced extreme weather events, including prolonged lacks of and heavy rainfall. Accurate rainfall forecasting is crucial for Thailand?s agricultural sector. Agriculture depends on rainfall water, which is important for water resources, adversity management, and overall socio-economic development. Artificial intelligence techniques (AITs) have shown remarkable precision in rainfall forecasting in the past two decades. AITs may accurately forecast rainfall by identifying hidden patterns from past weather data features. This research investigates and reviews the most recent AITs focused on advanced machine learning (ML), artificial neural networks (ANNs), and deep learning (DL) utilized for rainfall forecasting. For this investigation, academic articles from credible online search libraries published between 2000 and 2022 are analyzed. The authors focus on Thailand and the worldwide applications of AITs for rainfall forecasting and determine the best methods for Thailand. This will assist academics in analyzing the most recent work on rainfall forecasting, with a particular emphasis on AITs, but it will also serve as a benchmark for future comparisons. The investigation concludes that hybrid models combining ANNs with wavelet transformation and bootstrapping can improve the current accuracy of rainfall forecasting in Thailand.

 Artículos similares

       
 
Hamed Taherdoost and Mitra Madanchian    
In recent years, artificial intelligence (AI) has seen remarkable advancements, stretching the limits of what is possible and opening up new frontiers. This comparative review investigates the evolving landscape of AI advancements, providing a thorough e... ver más
Revista: AI

 
Dominik Warch, Patrick Stellbauer and Pascal Neis    
In the digital transformation era, video media libraries? untapped potential is immense, restricted primarily by their non-machine-readable nature and basic search functionalities limited to standard metadata. This study presents a novel multimodal metho... ver más
Revista: Future Internet

 
Davy Preuveneers and Wouter Joosen    
Ontologies have the potential to play an important role in the cybersecurity landscape as they are able to provide a structured and standardized way to semantically represent and organize knowledge about a domain of interest. They help in unambiguously m... ver más
Revista: Future Internet

 
Paul Scalise, Matthew Boeding, Michael Hempel, Hamid Sharif, Joseph Delloiacovo and John Reed    
With the rapid rollout and growing adoption of 3GPP 5thGeneration (5G) cellular services, including in critical infrastructure sectors, it is important to review security mechanisms, risks, and potential vulnerabilities within this vital technology. Nume... ver más
Revista: Future Internet

 
Qian Qu, Mohsen Hatami, Ronghua Xu, Deeraj Nagothu, Yu Chen, Xiaohua Li, Erik Blasch, Erika Ardiles-Cruz and Genshe Chen    
Over the past decade, there has been a remarkable acceleration in the evolution of smart cities and intelligent spaces, driven by breakthroughs in technologies such as the Internet of Things (IoT), edge?fog?cloud computing, and machine learning (ML)/arti... ver más
Revista: Future Internet