Resumen
Large quasi-elliptical cylinders are extensively used in ocean engineering. To enhance a better understanding of the hydrodynamic wave force on such quasi-elliptical cylinders during extreme events, a series of experiments on extreme wave interaction with a quasi-elliptical cylinder were conducted. A series of waves with various wave heights, wave periods, and wave incident directions were tested to investigate the wave parameter effect and wave directionality effect on the wave forces on the quasi-elliptical structure. The experimental results indicate that the extreme wave-induced forces on the quasi-elliptical cylinder are strongly correlated to the wave period and wave incident direction. The peak forces on the quasi-elliptical model do not vary monotonically with the increasing wave period but show an increase followed by a decrease. Both the longitudinal and transversal forces are significantly increased when the wave incident direction changes from 0° to 45° and the wave directionality effect is enhanced when the wave period is decreased. Additionally, the inertial force equation was applied to the wave force estimation for such quasi-elliptical cylinders, and the inertia coefficient CM was fitted based on the experimental results of a = 0°.