Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Agriculture  /  Vol: 12 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Neural Network Model for Greenhouse Microclimate Predictions

Theodoros Petrakis    
Angeliki Kavga    
Vasileios Thomopoulos and Athanassios A. Argiriou    

Resumen

Food production and energy consumption are two important factors when assessing greenhouse systems. The first must respond, both quantitatively and qualitatively, to the needs of the population, whereas the latter must be kept as low as possible. As a result, to properly control these two essential aspects, the appropriate greenhouse environment should be maintained using a computational decision support system (DSS), which will be especially adaptable to changes in the characteristics of the external environment. A multilayer perceptron neural network (MLP-NN) was designed to model the internal temperature and relative humidity of an agricultural greenhouse. The specific NN uses Levenberg?Marquardt backpropagation as a training algorithm; the input variables are the external temperature and relative humidity, wind speed, and solar irradiance, as well as the internal temperature and relative humidity, up to three timesteps before the modeled timestep. The maximum errors of the modeled temperature and relative humidity are 0.877 K and 2.838%, respectively, whereas the coefficients of determination are 0.999 for both parameters. A model with a low maximum error in predictions will enable a DSS to provide the appropriate commands to the greenhouse actuators to maintain the internal conditions at the desired levels for cultivation with the minimum possible energy consumption.

 Artículos similares

       
 
Lu Wang, Cunjie Yan, Wenqi Zhang and Yinghu Zhang    
Exploring the crop production water footprint and their driving factors is of significant importance for management of agricultural water resources. However, how do we effectively assess the total agricultural water consumption and explore the significan... ver más
Revista: Agronomy

 
Ying Chen, Xi Qiao, Feng Qin, Hongtao Huang, Bo Liu, Zaiyuan Li, Conghui Liu, Quan Wang, Fanghao Wan, Wanqiang Qian and Yiqi Huang    
Invasive plant species pose significant biodiversity and ecosystem threats. Real-time identification of invasive plants is a crucial prerequisite for early and timely prevention. While deep learning has shown promising results in plant recognition, the u... ver más
Revista: Agronomy

 
Zhiqing Guo, Xiaohui Chen, Ming Li, Yucheng Chi and Dongyuan Shi    
Peanut leaf spot is a worldwide disease whose prevalence poses a major threat to peanut yield and quality, and accurate prediction models are urgently needed for timely disease management. In this study, we proposed a novel peanut leaf spot prediction me... ver más
Revista: Agronomy

 
Efrain Noa-Yarasca, Javier M. Osorio Leyton and Jay P. Angerer    
Timely forecasting of aboveground vegetation biomass is crucial for effective management and ensuring food security. However, research on predicting aboveground biomass remains scarce. Artificial intelligence (AI) methods could bridge this research gap a... ver más
Revista: Agronomy

 
Lei Sun, Chongchong Yang, Jun Wang, Xiwen Cui, Xuesong Suo, Xiaofei Fan, Pengtao Ji, Liang Gao and Yuechen Zhang    
Existing maize production is grappling with the hurdles of not applying nitrogen fertilizer accurately due to subpar detection accuracy and responsiveness. This situation presents a significant challenge, as it has the potential to impact the optimal yie... ver más
Revista: Agronomy