Resumen
New ultra high bypass ratio architectures may significantly affect the fan tonal noise of future aircraft engines. Indeed, such a noise source is supposed to be dominated by the interaction of fan-blade wakes with outlet guide vanes. However, shorter nacelles in these engines are expected to trigger an important air-inlet distortion that can be responsible for new acoustic sources on the fan blades. Full annulus simulations based on the unsteady Reynolds-averaged Navier?Stokes equations are presently used to study this effect. Simulation results show that the air-inlet distortion has a main effect in the fan-tip region, leading to a strong variation of the fan-blade unsteady loading. It also significantly modifies the shape of the fan-blade wakes and, consequently, the unsteady loading of the outlet guide vanes. Acoustic predictions based on the extension of Goldstein?s analogy to an annular duct in a uniform axial flow are presented and show that the fan sources notably contribute to the fan tonal noise. The air-inlet distortion is responsible for an increase of the noise radiated by both the fan and the outlet guide vane sources, leading to a global noise penalty of up to three decibels.