Resumen
The accurate identification of moving target types in alert areas is a fundamental task for unattended ground sensors. Considering that the seismic and sound signals generated by ground moving targets in urban areas are easily affected by environmental noise and the power consumption of unattended ground sensors needs to be reduced to achieve low-power consumption, this paper proposes a ground moving target detection method based on evolutionary neural networks. The technique achieves the selection of feature extraction methods and the design of evolving neural network structures. The experimental results show that the improved model can achieve high recognition accuracy with a smaller feature vector and lower network complexity.