Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water  /  Vol: 10 Par: 10 (2018)  /  Artículo
ARTÍCULO
TITULO

Optimal Energy Recovery from Water Distribution Systems Using Smart Operation Scheduling

Ilker T. Telci and Mustafa M. Aral    

Resumen

Micro hydropower generators (micro turbines), are used to recover excess energy from hydraulic systems and these applications have important potential in renewable energy production. One of the most viable environments for the use of micro turbines is the water distribution network where, by design, there is always excess energy since minimum pressures are to be maintained throughout the system, and the system is designed to meet future water supply needs of a planning period. Under these circumstances, maintaining the target pressures is not an easy task due to the increasing complexity of the water distribution network to supply future demands. As a result, pressures at several locations of the network tend to be higher than the required minimum pressures. In this paper, we outline a methodology to recover this excess energy using smart operation management and the best placement of micro turbines in the system. In this approach, the best micro turbine locations and their operation schedule is determined to recover as much available excess energy as possible from the water distribution network while satisfying the current demand for water supply and pressure. Genetic algorithms (GAs) are used to obtain optimal solutions and a ?smart seeding? approach is developed to improve the performance of the GA. The Dover Township pump-driven water distribution system in New Jersey, United States of America (USA) was selected as the study area to test the proposed methodology. This pump-driven network was also converted into a hypothetical gravity-driven network to observe the differences between the energy recovery potential of the pump-driven and gravity-driven systems. The performance of the energy recovery system was evaluated by calculating the equivalent number of average American homes that can be fed by the energy produced and the resulting carbon-dioxide emission reductions that may be achieved. The results show that this approach is an effective tool for applications in renewable energy production in water distribution systems for small towns such as Dover Township. It is expected that, for larger water distribution systems with high energy usage, the energy recovery potential will be much higher.

 Artículos similares

       
 
Ting Shi and Xueyuan Peng    
Air compressors in hydrogen fuel cell vehicles play a crucial role in ensuring the stability of the cathode air system. However, they currently face challenges related to low efficiency and poor stability. To address these issues, the experimental setup ... ver más
Revista: Applied Sciences

 
Chaohong Wang, Xudong Zhang, Wang Chen, Feihu Jiang and Xiaogang Zhao    
Modernization and industrialization have significantly increased energy consumption, causing environmental problems. Given that China is the largest energy user, the rise in building energy consumption necessitates clean energy alternatives. The purpose ... ver más
Revista: Buildings

 
Jafar Jafari-Asl, Seyed Arman Hashemi Monfared and Soroush Abolfathi    
This study investigates the optimal and safe operation of pumping stations in water distribution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance processes. We introduced the nonlinear chaotic honey badger algorithm... ver más
Revista: Water

 
Mana Abusaq and Mohamed A. Zohdy    
Amidst a growing global focus on sustainable energy, this study investigates the underutilization of renewable resources in the southern region of Saudi Arabia, with a specific emphasis on the Najran Secondary Industrial Institute (NSII). This research p... ver más

 
Filippo Giorcelli, Sergej Antonello Sirigu, Giuseppe Giorgi, Nicolás Faedo, Mauro Bonfanti, Jacopo Ramello, Ermanno Giorcelli and Giuliana Mattiazzo    
Among the challenges generated by the global climate crisis, a significant concern is the constant increase in energy demand. This leads to the need to ensure that any novel energy systems are not only renewable but also reliable in their performance. A ... ver más