Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 5 (2022)  /  Artículo
ARTÍCULO
TITULO

Energy Efficient Framework for a AIoT Cardiac Arrhythmia Detection System Wearable during Sport

Alejandro Castillo-Atoche    
Karim Caamal-Herrera    
Ramón Atoche-Enseñat    
Johan J. Estrada-López    
Javier Vázquez-Castillo    
Andrea C. Castillo-Atoche    
Orlando Palma-Marrufo and Adolfo Espinoza-Ruiz    

Resumen

The growing market of wearables is expanding into different areas of application such as devices designed to improve and monitor sport activities. This in turn is pushing research on low-cost, very low-power wearable systems with increased analysis capabilities. This paper proposes integrated energy-aware techniques and a convolutional neural network (CNN) for a cardiac arrhythmia detection system that can be worn during sport training sessions. The dynamic power management strategy (DPMS) is programmed into an ultra-low-power microcontroller, and in combination with a photovoltaic (PV) energy harvesting (EH) circuit, achieves a battery-life extension towards a self-powered operation. The CNN-based analysis filters, scales the image, and using a bicubic technique, interpolates the measurements to subsequently classify the electrocardiogram (ECG) signal into normal and abnormal patterns. Experimental results show that the EH-DPMS achieves an extension in the battery charge for a total of 14.34% more energy available, which represents 12 consecutive workouts of 45 min without the need to manually recharge it. Furthermore, an arrhythmia detection precision of 98.6% is achieved among the experimental sessions using 55,222 images for training the system with the MIT-BIH, QT, and long-term ST databases, and 1320 implemented on a wearable system. Therefore, the proposed wearable system can be used to monitor an athlete?s condition, reducing the risk of abnormal heart conditions during sports activities.

 Artículos similares

       
 
Ambali Alade Odebowale, Andergachew Mekonnen Berhe, Haroldo T. Hattori and Andrey E. Miroshnichenko    
The radiative thermal memristor boasts versatile applications, excelling particularly in contactless thermal sensing, where its unique properties make it ideal for scenarios requiring non-intrusive temperature measurements. Additionally, it holds promise... ver más
Revista: Applied Sciences

 
Ting Shi and Xueyuan Peng    
Air compressors in hydrogen fuel cell vehicles play a crucial role in ensuring the stability of the cathode air system. However, they currently face challenges related to low efficiency and poor stability. To address these issues, the experimental setup ... ver más
Revista: Applied Sciences

 
Ugur Akis and Serkan Dislitas    
In applications reliant on image processing, the management of lighting holds significance for both precise object detection and efficient energy utilization. Conventionally, lighting control involves manual switching, timed activation or automated adjus... ver más
Revista: Applied Sciences

 
Qinsheng Yun, Xiangjun Wang, Shenghan Wang, Wei Zhuang and Wanlu Zhu    
This paper investigates the small-signal stability of a DC shipboard power system (SPS) with the integration of a supercapacitor. As an efficient energy storage solution, supercapacitors can not only provide rapid energy response to sudden power demand s... ver más

 
Andres-Amador Garcia-Granada    
Impacts due to drops or crashes between moving vehicles necessitate the search for energy absorption elements to prevent damage to the transported goods or individuals. To ensure safety, a given level of acceptable deceleration is provided. The optimizat... ver más
Revista: Computation