Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Algorithms  /  Vol: 13 Par: 7 (2020)  /  Artículo
ARTÍCULO
TITULO

Sensitivity Analysis for Microscopic Crowd Simulation

Marion Gödel    
Rainer Fischer and Gerta Köster    

Resumen

Microscopic crowd simulation can help to enhance the safety of pedestrians in situations that range from museum visits to music festivals. To obtain a useful prediction, the input parameters must be chosen carefully. In many cases, a lack of knowledge or limited measurement accuracy add uncertainty to the input. In addition, for meaningful parameter studies, we first need to identify the most influential parameters of our parametric computer models. The field of uncertainty quantification offers standardized and fully automatized methods that we believe to be beneficial for pedestrian dynamics. In addition, many methods come at a comparatively low cost, even for computationally expensive problems. This allows for their application to larger scenarios. We aim to identify and adapt fitting methods to microscopic crowd simulation in order to explore their potential in pedestrian dynamics. In this work, we first perform a variance-based sensitivity analysis using Sobol? indices and then crosscheck the results by a derivative-based measure, the activity scores. We apply both methods to a typical scenario in crowd simulation, a bottleneck. Because constrictions can lead to high crowd densities and delays in evacuations, several experiments and simulation studies have been conducted for this setting. We show qualitative agreement between the results of both methods. Additionally, we identify a one-dimensional subspace in the input parameter space and discuss its impact on the simulation. Moreover, we analyze and interpret the sensitivity indices with respect to the bottleneck scenario.

 Artículos similares

       
 
Hossein Salehi, Saeid Gharechelou, Saeed Golian, Mohammadreza Ranjbari and Babak Ghazi    
Hydrological modeling is essential for runoff simulations in line with climate studies, especially in remote areas with data scarcity. Advancements in climatic precipitation datasets have improved the accuracy of hydrological modeling. This research aims... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water

 
Martina Hauser, Stefan Reinstaller, Martin Oberascher, Dirk Muschalla and Manfred Kleidorfer    
Owing to climate change, heavy rainfall events have increased in recent years, often resulting in urban flooding. Urban flood models usually consider buildings to be closed obstacles, which is not the case in reality. To address this research gap, an exi... ver más
Revista: Water

 
Fajia Zheng, Bin Zhang, Yuqiong Zhao, Jiakun Li, Fei Long and Qibo Feng    
Key errors of machine tools have a significant impact on their accuracy, however accurately and quickly measuring the geometric errors of machine tools is essential for key error identification. Fortunately, a quick and direct laser measurement method an... ver más
Revista: Applied Sciences

 
Ping Xiao and Haiyan Wang    
In response to the optimal operation of ocean container ships, this paper presents a two-level planning model that takes into account carbon tax policies. This model translates the CO2 emissions of ships into carbon tax costs and aims to minimize the ove... ver más
Revista: Applied Sciences