Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

Multi-Objective Optimization of a Solar-Assisted Combined Cooling, Heating and Power Generation System Using the Greywolf Optimizer

Uchechi Ukaegbu    
Lagouge Tartibu and C. W. Lim    

Resumen

Energy demand and consumption have, in recent times, witnessed a rapid proliferation influenced by technological developments, increased population and economic growth. This has fuelled research trends in the domain of energy management employing tri-generation systems such as combined cooling, heating and power (CCHP) systems. Furthermore, the incorporation of renewable energy, especially solar energy, to complement the thermal input of fossil fuels has facilitated the effectiveness and sustainability of CCHP systems. This study proposes a new approach to improve the overall efficiency of CCHP systems and to compute optimal design parameters in order to assist decision makers to identify the best geometrical configuration. A multi-objective optimization formulation of a solar-assisted CCHP system was adopted to maximize the net power and exergy efficiency and to minimize the CO2 emission using the greywolf optimization technique. In addition, the effects of the decision variables on the objective functions were analysed. The proposed optimization approach yielded 100 set of Pareto optimal solutions which would serve as options for the decision maker when making a selection to choose from when seeking to improve the performance of a solar-assisted CCHP system. It also yielded higher exergy efficiency and lower CO2 emission values when compared with a similar study. The results obtained indicate that a system with high net power output does not necessarily translate to a highly efficient system. Additionally, minimal CO2 emissions were recorded for a system with low compression ratio, low combustion chamber inlet temperature and high inlet turbine temperature. This study demonstrates that the proposed approach is potentially suitable for the optimization of a solar-assisted CCHP system.

 Artículos similares

       
 
Vedat Dogan and Steven Prestwich    
In a multi-objective optimization problem, a decision maker has more than one objective to optimize. In a bilevel optimization problem, there are the following two decision-makers in a hierarchy: a leader who makes the first decision and a follower who r... ver más
Revista: Algorithms

 
Claudia Cavallaro, Carolina Crespi, Vincenzo Cutello, Mario Pavone and Francesco Zito    
This paper introduces an agent-based model grounded in the ACO algorithm to investigate the impact of partitioning ant colonies on algorithmic performance. The exploration focuses on understanding the roles of group size and number within a multi-objecti... ver más
Revista: Algorithms

 
Meng Ma, Zhirong Zhong, Zhi Zhai and Ruobin Sun    
There are hundreds of various sensors used for online Prognosis and Health Management (PHM) of LREs. Inspired by the fact that a limited number of key sensors are selected for inflight control purposes in LRE, it is practical to optimal placement of redu... ver más
Revista: Aerospace

 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace

 
Yaxin Dong, Hongxiang Ren, Yuzhu Zhu, Rui Tao, Yating Duan and Nianjun Shao    
To effectively address the increase in maritime accidents and the challenges posed by the trend toward larger ships for maritime safety, it is crucial to rationally allocate the limited maritime search and rescue (MSAR) resources and enhance accident res... ver más