Resumen
Low-energy rockfall catch fences are designed to protect infrastructure such as railways and roads wherein the kinetic energy of falling rocks is less than 100 kJ. The typical design consists of a double-twisted steel wire mesh supported by ground posts and strengthened by anchoring wire ropes. The fence stops falling rocks by dissipating the impact energy mainly through elastoplastic stretching of steel wires in the mesh. In this study, a three-dimensional finite element model for double-twisted wire mesh was developed in Abaqus/Explicit. The model has been verified using both quasi-static loading and impact tests. It was found that proper geometrical representation is essential for accurate simulation of wire deformation modes and the interaction between double-twisted wires. The model also enables the application of the real stress?strain relationship of a single steel wire in constitutive models.