Resumen
Since nature is an excellent source of inspiration for optimization methods, many optimization algorithms have been proposed, are inspired by nature, and are modified to solve various optimization problems. This paper uses metaheuristics in a new field inspired by nature; more precisely, we use pollination optimization in cocoa plants. The cocoa plant was chosen as the object since its flower type differs from other kinds of flowers, for example, by using cross-pollination. This complex relationship between plants and pollinators also renders pollination a real-world problem for chocolate production. Therefore, this study first identified the underlying optimization problem as a deferred fitness problem, where the quality of a potential solution cannot be immediately determined. Then, the study investigates how metaheuristic algorithms derived from three well-known techniques perform when applied to the flower pollination problem. The three techniques examined here are Swarm Intelligence Algorithms, Individual Random Search, and Multi-Agent Systems search. We then compare the behavior of these various search methods based on the results of pollination simulations. The criteria are the number of pollinated flowers for the trees and the amount and fairness of nectar pickup for the pollinator. Our results show that Multi-Agent System performs notably better than other methods. The result of this study are insights into the co-evolution of behaviors for the collaborative pollination task. We also foresee that this investigation can also help farmers increase chocolate production by developing methods to attract and promote pollinators.