Resumen
The amplified warming of the Arctic is one of several factors influencing atmospheric dynamics. In this work, we consider a series of numerical experiments to identify the role of Arctic sea ice reduction in affecting climate trends in the Northern Hemisphere. With this aim in mind, we use two independent mechanisms of ice reduction. The first is traditionally associated with increasing the concentration of carbon dioxide in the atmosphere from the historic level of 360 ppm to 450 ppm and 600 ppm. This growth increases air temperature and decreases the ice volume. The second mechanism is associated with a reduction in the reflectivity of ice and snow. We assume that comparing the results of these two experiments allows us to judge the direct role of ice reduction. The most prominent consequences of ice reduction, as a result, are the weakening of temperature gradient at the tropopause level in mid-latitudes; the slower zonal wind at 50?60° N; intensification of wave activity in Europe, Western America, and Chukotka; and its weakening in the south of Siberia and Kazakhstan. We also consider how climate change may alter regimes such as blocking and stationary Rossby waves. The study used the INM-CM48 climate system model.