Resumen
Herbicide resistance in weeds, including corn poppy (Papaver rhoeas L.), is an increasing problem compromising global crop production. The aims of this study were to evaluate the susceptibility of P. rhoeas populations in Poland to acetolactate synthase (ALS) inhibitors and elucidate their mechanisms of resistance. Between 2017 and 2020, 157 seed samples were collected nationwide and a dose-response study with various ALS-inhibiting herbicides was performed in glasshouses. This revealed 14 resistant populations with R/S ranges of 2.3?1450.2, 9.5?398.5 and 2?2.5 for tribenuron, iodosulfuron and florasulam, respectively. Eight of them were cross-resistant to both tribenuron and iodosulfuron, three and one populations were singly resistant to tribenuron and iodosulfuron, respectively, and one population had reduced susceptibility to florasulam only. In one population, cross-resistance to tribenuron, iodosulfuron and florasulam was identified. The ED50 of many populations susceptible to ALS inhibitors was close to half the recommended dose of the herbicides tested. In seven out of eight resistant P. rhoeas populations analysed, target-site resistance was identified. Six amino acid replacements were found (Ala197, Arg197, His197, Leu197, Ser197 and Thr197). In one population resistant to ALS inhibitors, no mutations in the ALS gene were detected. An efficient anti-resistance strategy is needed to reduce the development of herbicide resistance in P. rhoeas in Poland.