Resumen
Soil erosion has environmental and socioeconomic significances. Loess soils cover about 10% of the global land area. Most of these soils are subjected to increased land uses such as unpaved roads, which increase soil destruction and dust emission to the atmosphere. There is a significant interest in applications for dust control and soil stabilization. Application of geopolymers may significantly reduce environmental impacts. This study examines the use of a metakaolin-based geopolymer for dust control and soil stabilization in a semi-arid loess soil. The application of the geopolymer for dust control in comparison with common products (brine, bitumen, polyvinyl acetate-PVA) resulted in no dust emission. As a soil stabilizer, the geopolymer tested in this study provides remarkably good results in the tensile test. The most successful composition of the geopolymer, which is activation solution of sodium silicate and sodium hydroxide (NaOH) together with an addition of 30% metakaolin, obtained soil strength of 23,900 N after 28 days. The attempt to replace NaOH with lime (CaO) in the activation solution was far inferior to the original composition. There is a strong potential to develop natural soil stabilizers from a mineral base that even surpass their capabilities over existing synthetic stabilizers.