Resumen
The increased exposure to coastal flooding in low-lying coastal areas is one of the consequences of sea-level rise (SLR) induced by climate changes. The coastal zone of Guinea-Bissau contains significant areas of low elevation and is home to most of the population and economic activity, making it already vulnerable to coastal flooding, especially during spring tides and storm surges (SS). Coastal flooding will tend to intensify with the expected SLR in the coming decades. This study aimed at quantifying and mapping the area exposed to the coastal flooding hazard using SLR scenarios by the years 2041, 2083, and 2100. The study analyzes and discusses the application of a the simple ?bathtub? model coupled with a high-precision global digital elevation models (TanDEM-X DEM) to areas where no other data are available. Therefore, three coastal hazards hot-spots of Guinea-Bissau: Bissau, Bubaque, and Suzana, were used as case study. At each site, the area potentially exposed to coastal flooding was evaluated in a geographic information systems (GIS) environment, by estimating the Total Water Levels for each SLR scenario. For all areas, land exposed to coastal flooding hazard increases significantly and progressively with increasing SLR scenarios. Bissau and Suzana, where housing, infrastructure, and agricultural land are low-lying, presented the greatest flood exposure, while Bubaque, where housing and infrastructure are located in relatively high-lying land and rain-fed agriculture is practiced, present lesser flood exposure. The methodology presented is simple to use but powerful in identifying potentially vulnerable places to coastal flooding hazard, and its results can aid low developed countries to assess their exposure to coastal risks, thus supporting risk awareness and mitigation measures.