Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 17 (2022)  /  Artículo
ARTÍCULO
TITULO

GAN-TL: Generative Adversarial Networks with Transfer Learning for MRI Reconstruction

Muhammad Yaqub    
Feng Jinchao    
Shahzad Ahmed    
Kaleem Arshid    
Muhammad Atif Bilal    
Muhammad Pervez Akhter and Muhammad Sultan Zia    

Resumen

Generative adversarial networks (GAN), which are fueled by deep learning, are an efficient technique for image reconstruction using under-sampled MR data. In most cases, the performance of a particular model?s reconstruction must be improved by using a substantial proportion of the training data. However, gathering tens of thousands of raw patient data for training the model in actual clinical applications is difficult because retaining k-space data is not customary in the clinical process. Therefore, it is imperative to increase the generalizability of a network that was created using a small number of samples as quickly as possible. This research explored two unique applications based on deep learning-based GAN and transfer learning. Seeing as MRI reconstruction procedures go for brain and knee imaging, the proposed method outperforms current techniques in terms of signal-to-noise ratio (PSNR) and structural similarity index (SSIM). As compared to the results of transfer learning for the brain and knee, using a smaller number of training cases produced superior results, with acceleration factor (AF) 2 (for brain PSNR (39.33); SSIM (0.97), for knee PSNR (35.48); SSIM (0.90)) and AF 4 (for brain PSNR (38.13); SSIM (0.95), for knee PSNR (33.95); SSIM (0.86)). The approach that has been described would make it easier to apply future models for MRI reconstruction without necessitating the acquisition of vast imaging datasets.

 Artículos similares

       
 
Navid Khalili Dizaji and Mustafa Dogan    
Brain tumors are one of the deadliest types of cancer. Rapid and accurate identification of brain tumors, followed by appropriate surgical intervention or chemotherapy, increases the probability of survival. Accurate determination of brain tumors in MRI ... ver más
Revista: Algorithms

 
Hexin Lu, Xiaodong Zhu, Jingwei Cui and Haifeng Jiang    
The process of iris recognition can result in a decline in recognition performance when the resolution of the iris images is insufficient. In this study, a super-resolution model for iris images, namely SwinGIris, which combines the Swin Transformer and ... ver más
Revista: Algorithms

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Pedro Celard, Adrián Seara Vieira, José Manuel Sorribes-Fdez, Eva Lorenzo Iglesias and Lourdes Borrajo    
In this study, we propose a novel Temporal Development Generative Adversarial Network (TD-GAN) for the generation and analysis of videos, with a particular focus on biological and medical applications. Inspired by Progressive Growing GAN (PG-GAN) and Tem... ver más
Revista: Information

 
Sara Rajaram and Cassie S. Mitchell    
The ability to translate Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) into different modalities and data types is essential to improve Deep Learning (DL) for predictive medicine. This work presents DACMVA, a novel framework ... ver más
Revista: Information