Resumen
Grouting can effectively seal and reinforce broken rock masses in deep geotechnical engineering, which have an important impact on groundwater-related disaster prevention and control. Based on multi-field coupling mechanics and rotational viscosity experiments, an advance grouting migration model of cement slurry in tunnels with high-stress broken surrounding rock is built against the background of the Xianglushan Tunnel for water diversion in central Yunnan Province. The influence characteristics of water?cement ratio, grouting pressure, and initial permeability on the process of grouting material migration are analyzed by combining classical column theory and spherical theory. The results show the following: Overall, the growth rate of grouting radius is fast during the earlier 5 min and slows down later. At the fifth minute, the normal grouting ranges are 22 cm, 51 cm, and 58 cm, at water?cement ratios 0.6, 0.8, and 1.0, respectively, while the normal grouting ranges are 58 cm, 51 cm, and 36 cm at grouting pressures 2 MPa, 1 MPa, and 0.5 MPa, respectively; the normal grouting ranges are 58 cm, 24 cm, and 11 cm at initial permeabilities 5D, 0.5D, and 0.05D, respectively. At the 60th minute, the normal grouting ranges are 47 cm, 133 cm, and 155 cm at water?cement ratios 0.6, 0.8, and 1.0, respectively; the normal grouting ranges are 155 cm, 131 cm, and 96 cm at grouting pressures 2 MPa, 1 MPa, and 0.5 MPa, respectively; meanwhile, the normal grouting ranges are 155 cm, 63 cm, and 29 cm at initial permeabilities 5D, 0.5D, and 0.05D, respectively. This study can provide theoretical guidance for on-site grouting design in unfavorable geological treatment projects.