Resumen
For achieving high-performance control for a particleboard glue mixing and dosing control system, which is a time-delay system in low frequency working conditions, an improved active disturbance rejection controller is proposed. In order to reduce overshoot caused by a given large change between the actual output and expected value of the control object, a tracking differentiator (TD) is used to arrange the appropriate excesses. Through the first-order approximation of the time-delay link, the time-delay system is transformed into an output feedback problem with unknown function. Using the neural network state observer (NNSO), a sliding mode control law is used to achieve the accurate and fast tracking of the output signal. Finally, the numerical simulation results verify the effectiveness and feasibility of the proposed method.