Resumen
Efficient evacuation planning is important for quickly navigating people to shelters during and after an earthquake. Geographical information systems are often used to plan routes that minimize the distance people must walk to reach shelters, but this approach ignores the risk of exposure to hazards such as collapsing buildings. We demonstrate evacuation route assignment approaches that consider both hazard exposure and walking distance, by estimating building collapse hazard zones and incorporating them as travel costs when traversing road networks. We apply our methods to a scenario simulating the 2016 Gyeongju earthquake in South Korea, using the floating population distribution as estimated by a mobile phone network provider. Our results show that balanced routing would allow evacuees to avoid the riskiest districts while walking reasonable distances to open shelters. We discuss the feasibility of the model for balancing both safety and expediency in evacuation route planning.