Resumen
The influence of hafnium metal (Hf) and sulfate ions (SO42−" role="presentation" style="position: relative;">SO2-4SO42-
S
O
4
2
-
) on the acidic properties of SiO2 mesopores synthesized by a non-hydrothermal method was studied using the following characterization techniques; TG-DTG, XRD, BET, SEM, TEM, EDS, FTIR, n-butylamine titration, FTIR-pyridine, and alcohol dehydration. The incorporation of 3.6% mol of Hf during the silicate synthesis step caused the characteristic structural arrangement of MCM-41 to collapse. However, an increase in the acid strength of the catalyst of up to 315 mV was observed, with Brönsted and Lewis-type acid sites being mostly present therein. Furthermore, the acidity of Hf- and (SO42−" role="presentation" style="position: relative;">SO2-4SO42-
S
O
4
2
-
) -modified SiO2 in the dehydration of ethanol and methanol was evaluated, resulting in a selectivity towards ethylene and dimethyl ether, respectively. Acid solids have enormous potential to produce important compounds for the chemical industry using alternative routes other than petrochemical processes. They also represent a significant advance for biorefineries.