Resumen
Language plays a vital role in the communication of ideas, thoughts, and information to others. Hearing-impaired people also understand our thoughts using a language known as sign language. Every country has a different sign language which is based on their native language. In our research paper, our major focus is on Indian Sign Language, which is mostly used by hearing- and speaking-impaired communities in India. While communicating our thoughts and views with others, one of the most essential factors is listening. What if the other party is not able to hear or grasp what you are talking about? This situation is faced by nearly every hearing-impaired person in our society. This led to the idea of introducing an audio to Indian Sign Language translation system which can erase this gap in communication between hearing-impaired people and society. The system accepts audio and text as input and matches it with the videos present in the database created by the authors. If matched, it shows corresponding sign movements based on the grammar rules of Indian Sign Language as output; if not, it then goes through the processes of tokenization and lemmatization. The heart of the system is natural language processing which equips the system with tokenization, parsing, lemmatization, and part-of-speech tagging.