Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

A Missing Data Reconstruction Method Using an Accelerated Least-Squares Approximation with Randomized SVD

Siriwan Intawichai and Saifon Chaturantabut    

Resumen

An accelerated least-squares approach is introduced in this work by incorporating a greedy point selection method with randomized singular value decomposition (rSVD) to reduce the computational complexity of missing data reconstruction. The rSVD is used to speed up the computation of a low-dimensional basis that is required for the least-squares projection by employing randomness to generate a small matrix instead of a large matrix from high-dimensional data. A greedy point selection algorithm, based on the discrete empirical interpolation method, is then used to speed up the reconstruction process in the least-squares approximation. The accuracy and computational time reduction of the proposed method are demonstrated through three numerical experiments. The first two experiments consider standard testing images with missing pixels uniformly distributed on them, and the last numerical experiment considers a sequence of many incomplete two-dimensional miscible flow images. The proposed method is shown to accelerate the reconstruction process while maintaining roughly the same order of accuracy when compared to the standard least-squares approach.

 Artículos similares

       
 
Valerii Kozlovskyi, Ivan Shvets, Yurii Lysetskyi, Mikolaj Karpinski, Aigul Shaikhanova and Gulmira Shangytbayeva    
The classification of the natural and anthropogenic destabilizing factors of a telecommunications network as a complex system is presented herein. This research shows that to evaluate the parameters of a telecommunications network in the presence of dest... ver más
Revista: Information

 
Donghyuk Kum, Jichul Ryu, Yongchul Shin, Jihong Jeon, Jeongho Han, Kyoung Jae Lim and Jonggun Kim    
This study accounted for the importance of daily expansion flow data in compensating for insufficient flow data in a watershed. In particular, the 8-day interval flow measurement data (intermittent monitoring data) could cause uncertainty in the high- or... ver más
Revista: Water

 
Lixin Wang, Wenlei Sun, Jintao Zhao, Xuedong Zhang, Cheng Lu and Hao Luo    
As a critical raw material for the textile industry, cotton lint provides various types of cotton yarns, fabrics and finished products. However, due to the complexity of the supply chain and its many links, information records are often missing, inaccura... ver más
Revista: Applied Sciences

 
Bo Zhao, Qifan Zhang, Yangchun Liu, Yongzhi Cui and Baixue Zhou    
In response to the need for precision and intelligence in the assessment of transplanting machine operation quality, this study addresses challenges such as low accuracy and efficiency associated with manual observation and random field sampling for the ... ver más
Revista: Applied Sciences

 
Jesus Alejandro Serrato-Pedrosa, Guillermo Urriolagoitia-Sosa, Beatriz Romero-Ángeles, Guillermo Manuel Urriolagoitia-Calderón, Salvador Cruz-López, Alejandro Urriolagoitia-Luna, David Esaú Carbajal-López, Jonathan Rodolfo Guereca-Ibarra and Guadalupe Murillo-Aleman    
Plantar pressure distribution is a thoroughly recognized parameter for evaluating foot structure and biomechanical behavior, as it is utilized to determine musculoskeletal conditions and diagnose foot abnormalities. Experimental testing is currently bein... ver más
Revista: Applied Sciences