Resumen
This article addresses an integrated problem of one batching and two scheduling decisions between a manufacturing plant and multi-delivery sites. In this problem, two scheduling problems and one batching problem must be simultaneously determined. In the manufacturing plant, jobs ordered by multiple customers are first manufactured by one of the machines in the plant. They are grouped to the same delivery place and delivered to the corresponding customers using a set of delivery trucks within a limited capacity. For the optimal solution, a mixed integer linear programming model is developed and two variable neighborhood search algorithms employing different probabilistic schemes. We tested the proposed algorithms to compare the performance and conclude that the variable neighborhood search algorithm with dynamic case selection probability finds better solutions in reasonable computing times compared with the variable neighborhood search algorithm with static case selection probability and genetic algorithms based on the test results.