Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 14 (2020)  /  Artículo
ARTÍCULO
TITULO

The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins

Danica Kacíková    
Ivan Kubovský    
Nikoleta Ulbriková and Franti?ek Kacík    

Resumen

Thermal modification is an environmentally friendly method to improve dimensional stability, durability, and aesthetic properties of wood. Changes in lignin as one of the main wood components markedly influence wood product properties and recycling possibilities of thermowood at the end of its life cycle. Teak and iroko wood samples were thermally treated at the temperatures of 160 °C, 180 °C and 210 °C following the Thermowood process. Dioxane lignin was isolated from treated and untreated wood and analysed by nitrobenzene oxidation (NBO), size exclusion chromatography (SEC) and Fourier transform infrared spectroscopy (FTIR). The yields of both acid-insoluble and dioxane lignins increased with an increasing treatment temperature. Dioxane lignins are GS-types containing more guaiacyl units compared to syringyl ones with S/G ratios of 0.91 and 0.84, respectively. In the process of thermal modification, several degradation and condensation reactions were observed. The cleavage of methoxyl groups and side chains, oxidation reactions, cleavage of the ß-O-4 ether linkage and cross-linking radicals arising at higher temperatures were all confirmed. However, during the thermal treatment, teak lignin changed in a different way than iroko lignin, e.g., the molecular weight of iroko lignin decreased at all applied temperatures while it increased at 180 °C and 210 °C in teak lignin, and the change in S/G ratio and the cleavage of alkyl-aryl bonds are different in both wood species.

Palabras claves

 Artículos similares

       
 
Zijun Li, Qian Jia, Gang Li, Yu Xu, Junjian Wang and Xiaowei Zhai    
A high temperature is the key factor limiting the safe development of deep mine tunnels. By confronting the phenomenon of serious heat exchange between airflow and the surrounding rocks in the tunnel excavation area, a conceptual model of coupled cooling... ver más
Revista: Applied Sciences

 
Aras Dalgiç and Berivan Yilmazer Polat    
Geopolymer concrete (GC), also known as green concrete, contains slag, silica fume, and fly ash as binders. The absence of cement in concrete is critical to protect the world from the environmental impacts of cement production. In addition, exposure to h... ver más
Revista: Applied Sciences

 
Bo Yang, Hesen Yang, Ning Zhao, Hua Liang, Zhi Su and Dongsheng Zhang    
The double-wedge configuration is a typical characteristic shape of the rudder surface of high-speed aircraft. The impact of the shock wave/boundary layer interaction and the shock wave/shock wave interaction resulting from the double wedge on aircraft a... ver más
Revista: Aerospace

 
Sara Bonuso, Pasquale Di Gloria, Guido Marseglia, Ramón A. Otón Martínez, Ghazanfar Mehdi, Zubair Ali Shah, Antonio Ficarella and Maria Grazia De Giorgi    
This study introduces an innovative approach involving the injection of hydrogen into a low-swirl, non-premixed flame, which operates with gaseous fuels derived from an air-blast atomizer designed for aero-engine applications. The aim is to characterize ... ver más
Revista: Aerospace

 
Zhen Xu, Lianjiang Xu, Junfeng Sun, Meihong Liu, Taohong Liao and Xiangping Hu    
Flexible support cylindrical gas film seals (CGFSs) adapt well to rotor whirling and have a good gas lubrication effect during thermal deformation. However, when a CGFS operates under the ?three high? (high interface slip speed, high-pressure differentia... ver más
Revista: Aerospace