Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Algorithms  /  Vol: 13 Par: 1 (2020)  /  Artículo
ARTÍCULO
TITULO

Optimal Learning and Self-Awareness Versus PDI

Brendon Smeresky    
Alex Rizzo and Timothy Sands    

Resumen

This manuscript will explore and analyze the effects of different paradigms for the control of rigid body motion mechanics. The experimental setup will include deterministic artificial intelligence composed of optimal self-awareness statements together with a novel, optimal learning algorithm, and these will be re-parameterized as ideal nonlinear feedforward and feedback evaluated within a Simulink simulation. Comparison is made to a custom proportional, derivative, integral controller (modified versions of classical proportional-integral-derivative control) implemented as a feedback control with a specific term to account for the nonlinear coupled motion. Consistent proportional, derivative, and integral gains were used throughout the duration of the experiments. The simulation results will show that akin feedforward control, deterministic self-awareness statements lack an error correction mechanism, relying on learning (which stands in place of feedback control), and the proposed combination of optimal self-awareness statements and a newly demonstrated analytically optimal learning yielded the highest accuracy with the lowest execution time. This highlights the potential effectiveness of a learning control system.

 Artículos similares

       
 
Wencong Xu, Hongyi Lu, Lei Zhao and Borui He    
In recent years, with the rapid development of computer technology and artificial intelligence design technology, multiple possible design solutions can be quickly generated by transforming the experience and knowledge of structural design into computer ... ver más
Revista: Aerospace

 
Javensius Sembiring, Rianto Adhy Sasongko, Eduardo I. Bastian, Bayu Aji Raditya and Rayhan Ekananto Limansubroto    
This paper investigates the development of a deep learning-based flight control model for a tilt-rotor unmanned aerial vehicle, focusing on altitude, speed, and roll hold systems. Training data is gathered from the X-Plane flight simulator, employing a p... ver más
Revista: Aerospace

 
Tamás Kegyes, Alex Kummer, Zoltán Süle and János Abonyi    
We analyzed a special class of graph traversal problems, where the distances are stochastic, and the agent is restricted to take a limited range in one go. We showed that both constrained shortest Hamiltonian pathfinding problems and disassembly line bal... ver más
Revista: Information

 
Suryakant Tyagi and Sándor Szénási    
Machine learning and speech emotion recognition are rapidly evolving fields, significantly impacting human-centered computing. Machine learning enables computers to learn from data and make predictions, while speech emotion recognition allows computers t... ver más
Revista: Algorithms

 
Gleice Kelly Barbosa Souza, Samara Oliveira Silva Santos, André Luiz Carvalho Ottoni, Marcos Santos Oliveira, Daniela Carine Ramires Oliveira and Erivelton Geraldo Nepomuceno    
Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requir... ver más
Revista: Algorithms