Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

Wave Response of a Monocolumn Platform with a Skirt Using CFD and Experimental Approaches

Masaki Katafuchi    
Hideyuki Suzuki    
Yuya Higuchi    
Hidetaka Houtani    
Edgard B. Malta and Rodolfo T. Gonçalves    

Resumen

This paper aims to investigate the nonlinear motion characteristics of a monocolumn type floater with skirts numerically and experimentally. Wave calibration, free decay, and regular wave tests were simulated using a computational fluid dynamics (CFD) code OpenFOAM. The experiments were carried out in a wave tank to validate the CFD results. First, wave calibration tests were performed to investigate wave generation, development, propagation, and absorption in the numerical wave tank. Second, the simulation input parameters were calibrated to reproduce the waves generated in the tank experiment. Third, free decay tests of heave and pitch were conducted to examine the natural period and the linear and quadratic damping of the floater. A verification and validation study was performed using experimental data for free decay tests. Finally, regular wave tests were performed to investigate the motion characteristics of the floater. The results were processed to obtain the response amplitude operator (RAO) for the heave and pitch motions. The RAOs of the floater was compared with the experimental data and numerical simulations based on the linear potential theory code WAMIT to investigate the performance of the CFD simulations. The comparisons made in this work showed the potential of the CFD method to reproduce the motion characteristics of a shallow-draft floating object with a skirt in waves and to visualize the nonlinear phenomena behind the oscillation of the floating object.

 Artículos similares

       
 
Mingsheng Chen, Lenan Yang, Xinghan Sun, Jin Pan, Kai Zhang, Lin Lin, Qihao Yun and Ziwen Chen    
Evidence points to increasing the development of floating wind turbines to unlock the full potential of worldwide wind-energy generation. Barge-type floating wind turbines are of interest because of their shallow draft, structural simplicity, and moonpoo... ver más

 
Jian Qin, Zhenquan Zhang, Xuening Song, Shuting Huang, Yanjun Liu and Gang Xue    
In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinea... ver más

 
Tianhui Fan, Jianhu Fang, Xinkuan Yan and Yuan Ma    
The floating offshore wind turbine provides a feasible solution for the development of renewable ocean energy. However, the sizeable rotor diameter of the wind turbine results in large wind heeling moments and pitch amplitude. It will increase the struct... ver más

 
Jun Wang, Bo Yang, Bingchen Liang, Zai-Jin You, Zhenlu Wang and Zhaowei Wang    
In this study, laboratory experiments were conducted to investigate the influence of changes in storm wave height and water level on beach response in a medium-scale wave flume. A schematic storm was simulated (rising, apex, and waning phases). A non-int... ver más

 
Ángela Fontán-Bouzas, Tiago Abreu, Caroline C. Ferreira, Paulo A. Silva, Laura López-Olmedilla, José Guitián, Ana M. Bernabeu and Javier Alcántara-Carrió    
The morphological responses of two mesotidal beaches located in different coastal settings (embayed and open sandy beaches) on the northwestern Iberian coast were monitored during the winter of 2018/19. The offshore wave time series analysis is related t... ver más