Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

VLSD?An Efficient Subgroup Discovery Algorithm Based on Equivalence Classes and Optimistic Estimate

Antonio Lopez-Martinez-Carrasco    
Jose M. Juarez    
Manuel Campos and Bernardo Canovas-Segura    

Resumen

Subgroup Discovery (SD) is a supervised data mining technique for identifying a set of relations (subgroups) among attributes from a dataset with respect to a target attribute. Two key components of this technique are (i) the metric used to quantify a subgroup extracted, called quality measure, and (ii) the search strategy used, which determines how the search space is explored and how the subgroups are obtained. The proposal made in this work consists of two parts, (1) a new and efficient SD algorithm which is based on the equivalence class exploration strategy, and which uses a pruning based on optimistic estimate, and (2) a data structure used when implementing the algorithm in order to compute subgroup refinements easily and efficiently. One of the most important advantages of this algorithm is its easy parallelization. We have tested the performance of our SD algorithm with respect to some other well-known state-of-the-art SD algorithms in terms of runtime, max memory usage, subgroups selected, and nodes visited. This was completed using a collection of standard, well-known, and popular datasets obtained from the relevant literature. The results confirmed that our algorithm is more efficient than the other algorithms considered.

 Artículos similares

       
 
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib    
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow... ver más
Revista: Water

 
Zuhier Alakayleh, Xing Fang and T. Prabhakar Clement    
This study aims at furthering our understanding of the Modified Philip?Dunne Infiltrometer (MPDI), which is used to determine the saturated hydraulic conductivity Ks and the Green?Ampt suction head ? at the wetting front. We have developed a forward-mode... ver más
Revista: Water

 
Xiang Liu, Jin Zhang, Wenqing Shi, Min Wang, Kai Chen and Li Wang    
Understanding the drivers of macroinvertebrate community structure is fundamental for adequately controlling pollutants and managing ecosystems under global change. In this study, the abundance and diversity of benthic macroinvertebrates, as well as thei... ver más
Revista: Water

 
Muhammad Abi Berkah Nadi, Sayed Ahmad Fauzan     Pág. 1 - 9
Recovery efforts following a disaster can be slow and painstaking work, and potentially put responders in harm's way. A system which helps identify defects in critical building elements (e.g., concrete columns) before responders must enter a structure ca... ver más

 
Juan Murillo-Morera, Carlos Castro-Herrera, Javier Arroyo, Ruben Fuentes-Fernandez     Pág. 114 - 137
Today, it is common for software projects to collect measurement data through development processes. With these data, defect prediction software can try to estimate the defect proneness of a software module, with the objective of assisting and guiding so... ver más