Resumen
Computer vision is one of the most frontier technologies in computer science. It is used to build artificial systems to extract valuable information from images and has a broad range of applications in various areas such as agriculture, business, and healthcare. Convolutional neural networks represent the key algorithms in computer vision, and in recent years, they have attained notable advances in many real-world problems. The accuracy of the network for a particular task profoundly relies on the hyperparameters? configuration. Obtaining the right set of hyperparameters is a time-consuming process and requires expertise. To approach this concern, we propose an automatic method for hyperparameters? optimization and structure design by implementing enhanced metaheuristic algorithms. The aim of this paper is twofold. First, we propose enhanced versions of the tree growth and firefly algorithms that improve the original implementations. Second, we adopt the proposed enhanced algorithms for hyperparameters? optimization. First, the modified metaheuristics are evaluated on standard unconstrained benchmark functions and compared to the original algorithms. Afterward, the improved algorithms are employed for the network design. The experiments are carried out on the famous image classification benchmark dataset, the MNIST dataset, and comparative analysis with other outstanding approaches that were tested on the same problem is conducted. The experimental results show that both proposed improved methods establish higher performance than the other existing techniques in terms of classification accuracy and the use of computational resources.