Resumen
This paper presents the development of the JET humanoid robot, which is based on the existing THORMANG platform developed in 2015. Application in the industrial and service fields was targeted, and three design concepts were determined for the humanoid robot. First, low stiffness of the actuator modules was utilized for compliance with external environments. Second, to maximize the robot whole-body motion capability, the overall height was increased. However, the weight was reduced to satisfy power requirements. The workspace was also increased to enable various postures, by increasing the range of motion of each joint and extending the links. Compared to the original THORMANG platform, the lower limb length increased by approximately 20%, and the hip range of motion increased by 39.3%. Third, the maintenance process was simplified through modularization of the electronics and frame design for improved accessibility. Several experiments, including stair climbing and egress from a car, were performed to verify that the JET humanoid robot performance enhancements reflected the design concepts.