Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Experimental and Numerical Analysis of Supporting Forces and Lashing Forces in a Ship Cargo Securing Scheme

Mengxiang Li    
Guo Wang    
Kun Liu    
Yue Lu and Jiaxia Wang    

Resumen

The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this study, an independently designed cylindrical cargo securing scheme with supporting structures was adopted for investigation. Utilizing a sway device, three-degree-of-freedom coupled motion encountered during ship transportation was obtained, and data regarding changes in the support forces at the foundations and tension forces in the lashing ropes were collected. Subsequently, numerical simulations were conducted using the multibody dynamics software ADAMS 2020. The results obtained from the simulations were compared with the experimental data. The overall tendencies were accurately predicted in the numerical analysis. It was observed that the difference of the peak support forces between the numerical simulation results and the experimental data were within a 10% margin. In terms of the lashing ropes, the difference was limited, within 9%. These findings demonstrate that numerical simulation techniques can provide valuable insights for verifying the safety of practical cargo securing systems.

Palabras claves

 Artículos similares

       
 
Jesus Alejandro Serrato-Pedrosa, Guillermo Urriolagoitia-Sosa, Beatriz Romero-Ángeles, Guillermo Manuel Urriolagoitia-Calderón, Salvador Cruz-López, Alejandro Urriolagoitia-Luna, David Esaú Carbajal-López, Jonathan Rodolfo Guereca-Ibarra and Guadalupe Murillo-Aleman    
Plantar pressure distribution is a thoroughly recognized parameter for evaluating foot structure and biomechanical behavior, as it is utilized to determine musculoskeletal conditions and diagnose foot abnormalities. Experimental testing is currently bein... ver más
Revista: Applied Sciences

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Dilshan S. P. Amarasinghe Baragamage and Weiming Wu    
A three-dimensional (3D) fully-coupled fluid-structure model has been developed in this study to calculate the impact force of tsunamis on a flexible structure considering fluid-structure interactions. The propagation of a tsunami is simulated by solving... ver más
Revista: Water

 
Rafel Roig, Xavier Sánchez-Botello and Xavier Escaler    
Part 2 of this work presents a numerical methodology, validated using the experimental results presented in Part 1, to calculate the added modal coefficients of a submerged cylinder in water both when it oscillates and when it rotates with a whirling mot... ver más

 
Vito Vasilis Zheku, Diego Villa, Benedetto Piaggio, Stefano Gaggero and Michele Viviani    
During the early design stage of an underwater vehicle, the correct assessment of its manoeuvrability is a crucial task. Conducting experimental tests still has high costs, especially when dealing with small vehicles characterized by low available budget... ver más