Resumen
Lung cancer is one of the common causes of cancer deaths. Early detection and treatment of lung cancer is essential. However, the detection of lung cancer in patients produces many false positives. Therefore, increasing the accuracy of the classification of diagnosis or true detection by computed tomography (CT) is a difficult task. Solving this problem using intelligent and automated methods has become a hot research topic in recent years. Hence, we propose a 2D convolutional neural network (2D CNN) with Taguchi parametric optimization for automatically recognizing lung cancer from CT images. In the Taguchi method, 36 experiments and 8 control factors of mixed levels were selected to determine the optimum parameters of the 2D CNN architecture and improve the classification accuracy of lung cancer. The experimental results show that the average classification accuracy of the 2D CNN with Taguchi parameter optimization and the original 2D CNN in lung cancer recognition are 91.97% and 98.83% on the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset, and 94.68% and 99.97% on the International Society for Optics and Photonics with the support of the American Association of Physicists in Medicine (SPIE-AAPM) dataset, respectively. The proposed method is 6.86% and 5.29% more accurate than the original 2D CNN on the two datasets, respectively, proving the superiority of proposed model.