Resumen
This paper investigates the seismic behavior of a class of mixed reinforced concrete-steel buildings. In particular, mixed buildings constructed by r/c (reinforced concrete) at their lower story(ies) and structural steel at their upper story(ies) are studied from the viewpoint of their wide application in engineering praxis. The need to investigate the seismic behavior for this type of mixed buildings arises from the fact that the existent literature is small and that modern seismic codes do not offer specific seismic design recommendations for them. To study the seismic behavior of mixed r/c-steel buildings, a 3-D numerical model is employed and five realistic r/c-steel mixed buildings are simulated. Two cases of the support condition, i.e., fixed or pinned, of the lowest steel story to the upper r/c one are examined. The r/c and steel parts of the mixed buildings are initially designed as separate structures by making use of the relevant seismic design guidelines of Eurocode 8, and then the seismic response of these buildings is computed through non-linear time-history analyses. The special category of near-fault seismic motions is selected in these time-history analyses to force the mixed r/c-steel buildings under study to exhibit a strong non-linear response. Seismic response indices in terms of inter-story drift ratio, residual inter-story drift ratio and peak floor absolute accelerations are computed. The maximum values of these indices are discussed by comparing the two aforementioned kinds of support conditions and checking the satisfaction of specific seismic performance limits. Conclusions regarding the expected seismic behavior of mixed r/c-steel buildings under near-fault seismic motions are drawn. Finally, the need to introduce specific design recommendations for mixed r/c-steel buildings in modern seismic codes is stressed.