Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Nonlinear Fourier Analysis: Rogue Waves in Numerical Modeling and Data Analysis

Alfred R. Osborne    

Resumen

Nonlinear Fourier Analysis (NLFA) as developed herein begins with the nonlinear Schrödinger equation in two-space and one-time dimensions (the 2+1 NLS equation). The integrability of the simpler nonlinear Schrödinger equation in one-space and one-time dimensions (1+1 NLS) is an important tool in this analysis. We demonstrate that small-time asymptotic spectral solutions of the 2+1 NLS equation can be constructed as the nonlinear superposition of many 1+1 NLS equations, each corresponding to a particular radial direction in the directional spectrum of the waves. The radial 1+1 NLS equations interact nonlinearly with one another. We determine practical asymptotic spectral solutions of the 2+1 NLS equation that are formed from the ratio of two phase-lagged Riemann theta functions: Surprisingly this construction can be written in terms of generalizations of periodic Fourier series called (1) quasiperiodic Fourier (QPF) series and (2) almost periodic Fourier (APF) series (with appropriate limits in space and time). To simplify the discourse with regard to QPF and APF Fourier series, we call them NLF series herein. The NLF series are the solutions or approximate solutions of the nonlinear dynamics of water waves. These series are indistinguishable in many ways from the linear superposition of sine waves introduced theoretically by Paley and Weiner, and exploited experimentally and theoretically by Barber and Longuet-Higgins assuming random phases. Generally speaking NLF series do not have random phases, but instead employ phase locking. We construct the asymptotic NLF series spectral solutions of 2+1 NLS as a linear superposition of sine waves, with particular amplitudes, frequencies and phases. Because of the phase locking the NLF basis functions consist not only of sine waves, but also of Stokes waves, breather trains, and superbreathers, all of which undergo complex pair-wise nonlinear interactions. Breather trains are known to be associated with rogue waves in solutions of nonlinear wave equations. It is remarkable that complex nonlinear dynamics can be represented as a generalized, linear superposition of sine waves. NLF series that solve nonlinear wave equations offer a significant advantage over traditional periodic Fourier series. We show how NLFA can be applied to numerically model nonlinear wave motions and to analyze experimentally measured wave data. Applications to the analysis of SINTEF wave tank data, measurements from Currituck Sound, North Carolina and to shipboard radar data taken by the U. S. Navy are discussed. The ubiquitous presence of coherent breather packets in many data sets, as analyzed by NLFA methods, has recently led to the discovery of breather turbulence in the ocean: In this case, nonlinear Fourier components occur as strongly interacting, phase locked, densely packed breather modes, in contrast to the previously held incorrect belief that ocean waves are weakly interacting sine waves.

 Artículos similares

       
 
Hui Chen, Shaofeng Li, Jinbao Song and Hailun He    
This study aimed to highlight a general lack of clarity regarding the scale of the temporal averaging implicit in Ekman-type models. Under the assumption of time and depth-dependent eddy viscosity, we present an analytical Fourier series solution for a w... ver más

 
Manny Anthony M. Taguba, Dennis C. Ong, Benny Marie B. Ensano, Chi-Chuan Kan, Nurak Grisdanurak, Jurng-Jae Yee and Mark Daniel G. de Luna    
Researchers are in continuous search of better strategies to minimize, if not prevent, the anthropogenic release of toxic heavy metals, such as Cu(II) and Pb(II), into drinking water resources and the natural environment. Herein, we report for the first ... ver más
Revista: Water

 
Stella Civelli, Enrico Forestieri and Marco Secondini    
In the past years, nonlinear frequency division multiplexing (NFDM) has been investigated as a potentially revolutionary technique for nonlinear optical fiber communication. However, while NFDM is able to exploit the Kerr nonlinearity, its performance la... ver más
Revista: Applied Sciences

 
Joost Segers, Saeid Hedayatrasa, Gaétan Poelman, Wim Van Paepegem and Mathias Kersemans    
In this study, both linear and nonlinear vibrational defect imaging is performed for a cross-ply carbon fiber-reinforced polymer (CFRP) plate with artificial delaminations and for a quasi-isotropic CFRP with delaminations at the edge. The measured broadb... ver más
Revista: Applied Sciences

 
Xuefei Ma, Waleed Raza, Zhiqiang Wu, Muhammad Bilal, Ziqi Zhou and Amir Ali    
Machine learning and deep learning algorithms have proved to be a powerful tool for developing data-driven signal processing algorithms for challenging engineering problems. This paper studies the modern machine learning algorithm for modeling nonlinear ... ver más
Revista: Applied Sciences