Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Buildings  /  Vol: 13 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

Dynamic Response of Transmission Tower-Line Systems Due to Ground Vibration Caused by High-Speed Trains

Guifeng Zhao    
Meng Wang    
Ying Liu and Meng Zhang    

Resumen

With the continuous expansion of the scale of power grid and transportation infrastructure construction, the number of crossovers between transmission lines and high-speed railways continues to increase. At present, there is a lack of systematic research on the dynamic characteristics of transmission tower-line structures crossing high-speed railways under vehicle-induced ground vibration. This article focuses on the phenomenon of accidents such as line drops when crossing areas in recent years and establishes a high-speed train track foundation soil finite element model in ABAQUS that considers track irregularity. The three-dimensional vibration characteristics and attenuation law of train ground vibration are analyzed. Acceleration data for key points are also extracted. A separate finite element model of the transmission tower-line system is established in ANSYS, where acceleration is applied as an excitation to the transmission tower-line system, and the coupling effect between the tower and the line is considered to analyze its dynamic response. Subsequently, modal analysis is conducted on the tower-line system, providing the vibration modes and natural frequencies of the transmission tower-line structure. The effects of factors such as train speed, soil quality, and distance from the tower to the track on the dynamic response of the transmission tower-line system under vehicle-induced ground vibration are studied. The results show that the speed range (300 km/h?400 km/h) and track distance range (4.5 m?30 m) with the greatest impacts are obtained. The research results can provide a reference for the reasonable design of transmission tower-line systems in high-speed railway sections.

 Artículos similares

       
 
Fang Dong, Zhongqi Shi, Rumian Zhong and Nan Jin    
In this paper, A high-order response surface method is proposed for finite element model updating of continuous beam bridges. Firstly, based on visual inspection and environmental vibration testing, the peak picking (PP) method and random subspace identi... ver más
Revista: Buildings

 
Rocco Ditommaso and Felice Carlo Ponzo    
In recent years, the development of quick and streamlined methods for the detection and localization of structural damage has been achieved by analysing key dynamic parameters before and after significant events or as a result of aging. Many Structural H... ver más
Revista: Buildings

 
Yadong Zhu, Haifeng Jiao, Shihui Wang, Wenbo Zhu, Mengcheng Wang and Songshan Chen    
In order to study the pressure pulsation characteristics and structural dynamic response characteristics of a vertical shaft cross-flow pump, this study used a computational fluid dynamics (CFD) numerical simulation method to analyze the pressure pulsati... ver más
Revista: Water

 
Zhaohui Meng, Sihai Hu, Ran Sun, Chengzhen Meng, Yaoguo Wu and Xiaofeng Sun    
The transport of mobile colloidal particles with organic pollutants in porous media has attracted considerable attention. Aniline and 2,4,6-trinitrotoluene (TNT), as aromatic compounds and key components of energetic materials, are continuously released ... ver más
Revista: Water

 
Shichao Wang, Jun Song, Junru Guo, Yanzhao Fu, Yu Cai and Linhui Wang    
As one of the most significant disturbance sources in the upper marine environment of the South China Sea, tropical cyclones (typhoons) serve as a typical research subject for investigating the energy transfer process between the ocean and atmosphere. Ut... ver más
Revista: Water