Resumen
This research offers an improved method for the self-organization of a swarm of UAVs based on a social learning approach. To start, we use three different colonies and three best members i.e., unmanned aerial vehicles (UAVs) randomly placed in the colonies. This study uses max-min ant colony optimization (MMACO) in conjunction with social learning mechanism to plan the optimized path for an individual colony. Hereinafter, the multi-agent system (MAS) chooses the most optimal UAV as the leader of each colony and the remaining UAVs as agents, which helps to organize the randomly positioned UAVs into three different formations. Afterward, the algorithm synchronizes and connects the three colonies into a swarm and controls it using dynamic leader selection. The major contribution of this study is to hybridize two different approaches to produce a more optimized, efficient, and effective strategy. The results verify that the proposed algorithm completes the given objectives. This study also compares the designed method with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to prove that our method offers better convergence and reaches the target using a shorter route than NSGA-II.