Resumen
Process mining analyzes events that are logged during the execution of a process, with the aim of gathering useful information and knowledge. Process discovery algorithms derive process models that represent these processes. The level of abstraction at which the process model is represented is reflected in the granularity of the event log. When a process is captured by the usage of sensor systems, process activities are recorded at the sensor-level in the form of sensor readings, and are therefore too fine-grained and non-explanatory. To increase the understandability of the process model, events need to be abstracted into higher-level activities that provide a more meaningful representation of the process. The abstraction becomes more relevant and challenging when the process involves human behavior, as the flexible nature of human actions can make it harder to identify and abstract meaningful activities. This paper proposes CvAMoS, a trace-based approach for event abstraction, which focuses on identifying motifs while taking context into account. A motif is a recurring sequence of events that represents an activity that took place under specific circumstances depicted by the context. Context information is logged in the event log in the form of environmental sensor readings (e.g., the temperature and light sensors). The presented algorithm uses a distance function to deal with the variability in the execution of activities. The result is a set of meaningful and interpretable motifs. The algorithm has been tested on both synthetic and real datasets, and compared to the state of the art. CvAMoS is implemented as a Java application and the code is freely available.