Resumen
Romanian seismicity is mainly confined to the Eastern Carpathians Arc bend (ECAB), where strong subcrustal earthquakes (magnitude up to 7.9) are generated in a narrow lithospheric body descending into the mantle. The seismic activity in the overlying crust is spread over a larger area, located mostly toward the outer side of the ECAB. It is significantly smaller than subcrustal seismicity, raising controversies about possible upper mantle-crust coupling. A significant earthquake sequence took place in the foreland of the ECAB triggered on 22 November 2014 by a mainshock of magnitude 5.7 (the greatest instrumentally recorded earthquake in this region) located in the lower crust. The mainshock triggered a significant increase in the number of small-magnitude events spread over an unusually large area in the ECAB. The paper?s goal is to compute the source parameters of the earthquakes that occurred during the aforementioned sequence, by empirical application of Green?s function and spectral ratio techniques. Fault plane solutions are determined using multiple methods and seismicity evolution at regional scale is investigated. Our results highlight a still active deformation regime at the edge of the EE Craton, while the source parameters reveal a complex fracture of the mainshock and a very high-stress drop.